58 research outputs found

    1/f Noise in Electron Glasses

    Full text link
    We show that 1/f noise is produced in a 3D electron glass by charge fluctuations due to electrons hopping between isolated sites and a percolating network at low temperatures. The low frequency noise spectrum goes as \omega^{-\alpha} with \alpha slightly larger than 1. This result together with the temperature dependence of \alpha and the noise amplitude are in good agreement with the recent experiments. These results hold true both with a flat, noninteracting density of states and with a density of states that includes Coulomb interactions. In the latter case, the density of states has a Coulomb gap that fills in with increasing temperature. For a large Coulomb gap width, this density of states gives a dc conductivity with a hopping exponent of approximately 0.75 which has been observed in recent experiments. For a small Coulomb gap width, the hopping exponent approximately 0.5.Comment: 8 pages, Latex, 6 encapsulated postscript figures, to be published in Phys. Rev.

    Impact of temporal variation on design and analysis of mouse knockout phenotyping studies.

    No full text
    A significant challenge facing high-throughput phenotyping of in-vivo knockout mice is ensuring phenotype calls are robust and reliable. Central to this problem is selecting an appropriate statistical analysis that models both the experimental design (the workflow and the way control mice are selected for comparison with knockout animals) and the sources of variation. Recently we proposed a mixed model suitable for small batch-oriented studies, where controls are not phenotyped concurrently with mutants. Here we evaluate this method both for its sensitivity to detect phenotypic effects and to control false positives, across a range of workflows used at mouse phenotyping centers. We found the sensitivity and control of false positives depend on the workflow. We show that the phenotypes in control mice fluctuate unexpectedly between batches and this can cause the false positive rate of phenotype calls to be inflated when only a small number of batches are tested, when the effect of knockout becomes confounded with temporal fluctuations in control mice. This effect was observed in both behavioural and physiological assays. Based on this analysis, we recommend two approaches (workflow and accompanying control strategy) and associated analyses, which would be robust, for use in high-throughput phenotyping pipelines. Our results show the importance in modelling all sources of variability in high-throughput phenotyping studies

    The Role of HIV in the Household Introduction and Transmission of Influenza in an Urban Slum, Nairobi, Kenya, 2008-2011

    No full text
    Item does not contain fulltextBACKGROUND: Little is known about how human immunodeficiency virus (HIV) infection affects influenza transmission within homes in sub-Saharan Africa. METHODS: We used respiratory illness surveillance and HIV testing data gathered in Kibera, an urban slum in Nairobi, Kenya, to examine the impact of HIV status on (1) introducing influenza to the home and (2) transmitting influenza to household contacts. RESULTS: While HIV status did not affect the likelihood of being an influenza index case, household contacts of HIV-infected influenza index cases had twice the risk of developing secondary influenza-like illness than contacts of HIV-negative index cases. CONCLUSIONS: HIV-infected influenza index cases may facilitate transmission of influenza within the home
    corecore