5 research outputs found

    Urinary 1-Hydroxypyrene as a Biomarker of PAH Exposure in 3-Year-Old Ukrainian Children

    Get PDF
    Urinary 1-hydroxypyrene (1-OHP) is a biomarker of polycyclic aromatic hydrocarbon (PAH) exposure. We measured urinary 1-OHP in 48 children 3 years of age in Mariupol, Ukraine, who lived near a steel mill and coking facility and compared these with 1-OHP concentrations measured in 42 children of the same age living in the capital city of Kiev, Ukraine. Children living in Mariupol had significantly higher urinary 1-OHP and creatinine-adjusted urinary 1-OHP than did children living in Kiev (adjusted: 0.69 vs. 0.34 μmol/mol creatinine, p < 0.001; unadjusted: 0.42 vs. 0.30 ng/mL, p = 0.002). Combined, children in both cities exposed to environmental tobacco smoke in their homes had higher 1-OHP than did children not exposed (0.61 vs. 0.42 μmol/mol creatinine; p = 0.04; p = 0.07 after adjusting for city). In addition, no significant differences were seen with sex of the children. Our sample of children in Mariupol has the highest reported mean urinary 1-OHP concentrations in children studied to date, most likely due to their proximity to a large industrial point source of PAHs

    Urinary 1-Hydroxypyrene as a Biomarker of PAH Exposure in 3-Year-Old Ukrainian Children-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Urinary 1-Hydroxypyrene as a Biomarker of PAH Exposure in 3-Year-Old Ukrainian Children"</p><p>Environmental Health Perspectives 2005;114(4):603-609.</p><p>Published online 20 Oct 2005</p><p>PMCID:PMC1440788.</p><p>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.</p

    Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges

    No full text
    The US Environmental Protection Agency (EPA) and other federal agencies face a number of challenges in interpreting and reconciling short-duration (seconds to minutes) readings from mobile and handheld air sensors with the longer duration averages (hours to days) associated with the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants-particulate matter (PM), ozone, carbon monoxide, lead, nitrogen oxides, and sulfur oxides. Similar issues are equally relevant to the hazardous air pollutants (HAPs) where chemical-specific health effect reference values are the best indicators of exposure limits; values which are often based on a lifetime of continuous exposure. A multi-agency, staff-level Air Sensors Health Group (ASHG) was convened in 2013. ASHG represents a multi-institutional collaboration of Federal agencies devoted to discovery and discussion of sensor technologies, interpretation of sensor data, defining the state of sensor-related science across each institution, and provides consultation on how sensors might effectively be used to meet a wide range of research and decision support needs. ASHG focuses on several fronts: improving the understanding of what hand-held sensor technologies may be able to deliver; communicating what hand-held sensor readings can provide to a number of audiences; the challenges of how to integrate data generated by multiple entities using new and unproven technologies; and defining best practices in communicating health-related messages to various audiences. This review summarizes the challenges, successes, and promising tools of those initial ASHG efforts and Federal agency progress on crafting similar products for use with other NAAQS pollutants and the HAPs. NOTE: The opinions expressed are those of the authors and do not necessary represent the opinions of their Federal Agencies or the US Government. Mention of product names does not constitute endorsement
    corecore