23 research outputs found

    Functional analysis of a prenyltransferase gene (paxD) in the paxilline biosynthetic gene cluster

    Get PDF
    Paxilline is an indole-diterpene produced by Penicillium paxilli. Six genes (paxB, C, G, M, P, and Q) in paxilline biosynthetic gene cluster were previously shown to be responsible for paxilline biosynthesis. In this study, we have characterized paxD, which is located next to paxQ and has weak similarities to fungal dimethylallyl tryptophan synthase genes. PaxD was overexpressed in Escherichia coli and the purified enzyme was used for in vitro analysis. When paxilline and dimethylallyl diphosphate were used as substrates, one major and one minor product, which were identified as di-prenyl paxilline and mono-prenyl paxilline by liquid chromatography-mass spectrometry analysis, were formed. The structure of the major product was determined to be 21,22-diprenylated paxilline, showing that PaxD catalyzed the successive di-prenylation. Traces of both products were detected in culture broth of P. paxilli by liquid chromatography-mass spectrometry analysis. The enzyme is likely to be a dimer and required no divalent cations. The optimum pH and temperature were 8.0 and 37 A degrees C, respectively. The Km values were calculated as 106.4 A +/- 5.4 mu M for paxilline and 0.57 A +/- 0.02 mu M for DMAPP with a kcat of 0.97 A +/- 0.01/s

    Regiospecificities and Prenylation Mode Specificities of the Fungal Indole Diterpene Prenyltransferases AtmD and PaxD

    Get PDF
    We recently reported the function of paxD, which is involved in the paxilline (compound 1) biosynthetic gene cluster in Penicillium paxilli. Recombinant PaxD catalyzed a stepwise regular-type diprenylation at the 21 and 22 positions of compound 1 with dimethylallyl diphosphate (DMAPP) as the prenyl donor. In this study, atmD, which is located in the aflatrem (compound 2) biosynthetic gene cluster in Aspergillus flavus and encodes an enzyme with 32% amino acid identity to PaxD, was characterized using recombinant enzyme. When compound 1 and DMAPP were used as substrates, two major products and a trace of minor product were formed. The structures of the two major products were determined to be reversely monoprenylated compound 1 at either the 20 or 21 position. Because compound 2 and beta-aflatrem (compound 3), both of which are compound 1-related compounds produced by A. flavus, have the same prenyl moiety at the 20 and 21 position, respectively, AtmD should catalyze the prenylation in compound 2 and 3 biosynthesis. More importantly and surprisingly, AtmD accepted paspaline (compound 4), which is an intermediate of compound 1 biosynthesis that has a structure similar to that of compound 1, and catalyzed a regular monoprenylation of compound 4 at either the 21 or 22 position, though the reverse prenylation was observed with compound 1. This suggests that fungal indole diterpene prenyltransferases have the potential to alter their position and regular/ reverse specificities for prenylation and could be applicable for the synthesis of industrially useful compounds

    Identification and analysis of the resorcinomycin biosynthetic gene cluster

    No full text
    <div><p>Resorcinomycin (1) is composed of a nonproteinogenic amino acid, (<i>S</i>)-2-(3,5-dihydroxy-4-isopropylphenyl)-2-guanidinoacetic acid (2), and glycine. A biosynthetic gene cluster was identified in a genome database of <i>Streptoverticillium roseoverticillatum</i> by searching for orthologs of the genes responsible for biosynthesis of pheganomycin (3), which possesses a (2)-derivative at its <i>N</i>-terminus. The cluster contained a gene encoding an ATP-grasp-ligase (<i>res5</i>), which was suggested to catalyze the peptide bond formation between 2 and glycine. A <i>res5</i>-deletion mutant lost 1 productivity but accumulated 2 in the culture broth. However, recombinant RES5 did not show catalytic activity to form 1 with 2 and glycine as substrates. Moreover, heterologous expression of the cluster resulted in accumulation of only 2 and no production of 1 was observed. These results suggested that a peptide with glycine at its <i>N</i>-terminus may be used as a nucleophile and then maturated by a peptidase encoded by a gene outside of the cluster.</p></div
    corecore