84 research outputs found

    Cell–matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation

    Get PDF
    CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and undergoes sequential proteolytic cleavages in its ectodomain and intramembranous domain. The ectodomain cleavage is triggered by extracellular Ca2+ influx or the activation of protein kinase C. Here we show that CD44-mediated cell–matrix adhesion is terminated by two independent ADAM family metalloproteinases, ADAM10 and ADAM17, differentially regulated in response to those stimuli. Ca2+ influx activates ADAM10 by regulating the association between calmodulin and ADAM10, leading to CD44 ectodomain cleavage. Depletion of ADAM10 strongly inhibits the Ca2+ influx-induced cell detachment from matrix. On the other hand, phorbol ester stimulation activates ADAM17 through the activation of PKC and small GTPase Rac, inducing proteolysis of CD44. Furthermore, depletion of ADAM10 or ADAM17 markedly suppressed CD44-dependent cancer cell migration on HA, but not on fibronectin. The spatio-temporal regulation of two independent signaling pathways for CD44 cleavage plays a crucial role in cell–matrix interaction and cell migration

    The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>5-Aminolevulinic acid (ALA) is a precursor of heme that is fundamentally important in aerobic energy metabolism. Among the enzymes involved in aerobic energy metabolism, cytochrome <it>c </it>oxidase (COX) is crucial. In this study, the effect of ALA on cytochrome <it>c </it>oxidase activity was measured.</p> <p>Findings</p> <p>c57BL/6N species of mice were administered ALA orally for 15 weeks. After ALA administration, mice were sacrificed and livers were obtained. COX activity in mitochondria from ALA-administered mouse livers was 1.5-fold higher than that in mitochondria from PBS-administered mouse livers (P < 0.05). Furthermore, ATP levels in ALA-administered mouse livers were much higher than those in PBS-administered mouse livers. These data suggest that oral administration of ALA promotes aerobic energy metabolism, especially COX activity.</p> <p>Conclusions</p> <p>This is the first report of a drug that functions in aerobic energy metabolism directly. Since COX activity is decreased in various diseases and aging, the pharmacological effects of ALA will be expanding.</p

    Transport of somatostatin and substance P by human P-glycoprotein

    Get PDF
    AbstractP-glycoprotein is an efflux pump for a broad spectrum of hydrophobic agents. We found that bioactive peptides including somatostatin and substance P inhibit ATP-dependent vincristine binding to P-glycoprotein-overexpressing K562/ADM membrane vesicles. Some of these bioactive peptides including somatostatin stimulate basal ATPase activity of P-glycoprotein; in contrast, other peptides including substance P inhibit it. The K562/ADM membrane vesicles showed an ATP-dependent, osmotically sensitive uptake of somatostatin and substance P, which was inhibited by valspodar, an inhibitor of P-glycoprotein. These findings suggested that certain bioactive peptides such as somatostatin and substance P directly interact with human P-glycoprotein as endogenous substrates for P-glycoprotein-mediated transport

    Oxygen Availability for Porphyrin Biosynthesis Enzymes Determines the Production of Protoporphyrin IX (PpIX) during Hypoxia.

    No full text
    5-Aminolevulinic acid (ALA), a precursor of porphyrin, is specifically converted to the fluorescent substance protoporphyrin IX (PpIX) in tumors to be used as a prodrug for photodynamic therapy and diagnosis. Hypoxia, a common feature of solid tumors, decreases the efficacy of ALA-based photodynamic therapy and diagnosis. This decrease results from the excretion of porphyrin precursor coproporphyrinogen III (CPgenIII), an intermediate in the biosynthesis of PpIX. However, the mechanism of CPgenIII excretion during hypoxia remains unclear. In this study, we revealed the importance of mitochondrial respiration for the production of PpIX during hypoxia. Porphyrin concentrations were estimated in human gastric cancer cell lines by HPLC. Expression levels of porphyrin biosynthesis genes were measured by qRT-PCR and immunoblotting. Blockage of porphyrin biosynthesis was an oxygen-dependent phenomenon resulting from decreased PpIX production in mitochondria under hypoxic conditions. PpIX production was increased by the inhibition of mitochondrial respiration complexes, which indicates that the enzymes of porphyrin biosynthesis compete with respiration complexes for molecular oxygen. Our results indicate that targeting the respiration complexes is a rationale for enhancing the effect of ALA-mediated treatment and diagnosis

    The effects of the heme precursor 5-aminolevulinic acid (ALA) on REV-ERBα activation

    Get PDF
    The nuclear receptor, REV-ERBα, has a key role in circadian rhythms and requires heme as its ligand. The present study determined whether the heme precursor, 5-aminolevulinic acid (ALA), affects REV-ERBα and its target genes. When exposed to ALA, the human lung diploid cell line, WI-38, exhibited activation of REV-ERBα and repression of the transcription of REV-ERBα target genes, including BMAL1, an essential component of the circadian oscillator. Moreover, co-incubation of sodium ferrous citrate (SFC) and ALA also activated REV-ERBα and repressed the transcription of REV-ERBα target genes. These results indicate that ALA regulates human circadian rhythms via REV-ERBα

    5-Aminolevulinic acid regulates the immune response in LPS-stimulated RAW 264.7 macrophages

    No full text
    Abstract Background Macrophages are crucial players in a variety of inflammatory responses to environmental cues. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of 5-aminolevulinic acid (ALA), via the HO-1-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Results RAW264.7 cells were treated with LPS with or without ALA, and proinflammatory mediator expression levels and phagocytic ability were assessed. ALA treatment resulted in the attenuation of iNOS and NO expression and the downregulation of proinflammatory cytokines (TNF-α, cyclooxygenase2, IL-1β, IL-6). In addition, ALA treatment did not affect the phagocytic ability of macrophages. To our knowledge, this study is the first to investigate the effect of ALA on macrophage function. Our findings suggest that ALA may have high potential as a novel anti-inflammatory agent. Conclusions In the present study, we showed that exogenous addition of ALA induces HO-1 and leads to the downregulation of NO and some proinflammatory cytokines. These findings support ALA as a promising anti-inflammatory agent
    corecore