88 research outputs found

    Geometry of Character Varieties of Surface Groups

    Full text link
    This article is based on a talk delivered at the RIMS--OCAMI Joint International Conference on Geometry Related to Integrable Systems in September, 2007. Its aim is to review a recent progress in the Hitchin integrable systems and character varieties of the fundamental groups of Riemann surfaces. A survey on geometric aspects of these character varieties is also provided as we develop the exposition from a simple case to more elaborate cases.Comment: 21 page

    Volume of representation varieties

    Full text link
    We introduce the notion of volume of the representation variety of a finitely presented discrete group in a compact Lie group using the push-forward measure associated to a map defined by a presentation of the discrete group. We show that the volume thus defined is invariant under the Andrews-Curtis moves of the generators and relators of the discrete group, and moreover, that it is actually independent of the choice of presentation if the difference of the number of generators and the number of relators remains the same. We then calculate the volume of the representation variety of a surface group in an arbitrary compact Lie group using the classical technique of Frobenius and Schur on finite groups. Our formulas recover the results of Witten and Liu on the symplectic volume and the Reidemeister torsion of the moduli space of flat G-connections on a surface up to a constant factor when the Lie group G is semisimple.Comment: 27 pages in AMS-LaTeX forma

    Commutative Algebras of Ordinary Differential Operators with Matrix Coefficients

    Full text link
    A classification of commutative integral domains consisting of ordinary differential operators with matrix coefficients is established in terms of morphisms between algebraic curves.Comment: AMS-TeX format, 16 page

    Edge contraction on dual ribbon graphs and 2D TQFT

    Full text link
    We present a new set of axioms for 2D TQFT formulated on the category of cell graphs with edge-contraction operations as morphisms. We construct a functor from this category to the endofunctor category consisting of Frobenius algebras. Edge-contraction operations correspond to natural transformations of endofunctors, which are compatible with the Frobenius algebra structure. Given a Frobenius algebra A, every cell graph determines an element of the symmetric tensor algebra defined over the dual space A*. We show that the edge-contraction axioms make this assignment depending only on the topological type of the cell graph, but not on the graph itself. Thus the functor generates the TQFT corresponding to A.Comment: accepted in Journal of Algebra (22 pages, 13 figures

    An invitation to 2D TQFT and quantization of Hitchin spectral curves

    Full text link
    This article consists of two parts. In Part 1, we present a formulation of two-dimensional topological quantum field theories in terms of a functor from a category of Ribbon graphs to the endofuntor category of a monoidal category. The key point is that the category of ribbon graphs produces all Frobenius objects. Necessary backgrounds from Frobenius algebras, topological quantum field theories, and cohomological field theories are reviewed. A result on Frobenius algebra twisted topological recursion is included at the end of Part 1. In Part 2, we explain a geometric theory of quantum curves. The focus is placed on the process of quantization as a passage from families of Hitchin spectral curves to families of opers. To make the presentation simpler, we unfold the story using SL_2(\mathbb{C})-opers and rank 2 Higgs bundles defined on a compact Riemann surface CC of genus greater than 11. In this case, quantum curves, opers, and projective structures in CC all become the same notion. Background materials on projective coordinate systems, Higgs bundles, opers, and non-Abelian Hodge correspondence are explained.Comment: 53 pages, 6 figure

    Ribbon Graphs, Quadratic Differentials on Riemann Surfaces, and Algebraic Curves Defined over Qˉ\bar Q

    Full text link
    It is well known that there is a bijective correspondence between metric ribbon graphs and compact Riemann surfaces with meromorphic Strebel differentials. In this article, it is proved that Grothendieck's correspondence between dessins d'enfants and Belyi morphisms is a special case of this correspondence. For a metric ribbon graph with edge length 1, an algebraic curve over Qˉ\bar Q and a Strebel differential on it is constructed. It is also shown that the critical trajectories of the measured foliation that is determined by the Strebel differential recover the original metric ribbon graph. Conversely, for every Belyi morphism, a unique Strebel differential is constructed such that the critical leaves of the measured foliation it determines form a metric ribbon graph of edge length 1, which coincides with the corresponding dessin d'enfant.Comment: Higher resolution figures available at http://math.ucdavis.edu/~mulase

    Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy

    Full text link
    We present in this paper a differential version of Mirzakhani's recursion relation for the Weil-Petersson volumes of the moduli spaces of bordered Riemann surfaces. We discover that the differential relation, which is equivalent to the original integral formula of Mirzakhani, is a Virasoro constraint condition on a generating function for these volumes. We also show that the generating function for psi and kappa_1 intersections on the moduli space of stable algebraic curves is a 1-parameter solution to the KdV hierarchy. It recovers the Witten-Kontsevich generating function when the parameter is set to be 0.Comment: 21 pages, 3 figures; v3. new introduction, minor revision
    corecore