103 research outputs found
TRIM5 retroviral restriction activity correlates with the ability to induce innate immune signaling
Host restriction factor TRIM5 inhibits retroviral transduction in a species-specific manner by binding to and destabilizing the retroviral capsid lattice before reverse transcription is completed. But the restriction mechanism may not be that simple since TRIM5 E3 ubiquitin ligase activity, the proteasome, autophagy, and TAK1-dependent AP-1 signaling have been suggested to contribute to restriction. Here we show that, among a panel of seven primate and Carnivora TRIM5 orthologues, each of which has potential for potent retroviral restriction activity, all activated AP-1 signaling. In contrast, TRIM family paralogues most closely related to TRIM5 did not. While each primate species has a single TRIM5 gene, mice have at least seven TRIM5 homologues that cluster into two groups, Trim12a, b, and c, and Trim30a, b, c, and d. The three Trim12 proteins activated innate immune signaling, while the Trim30 proteins did not, though none of the murine Trim5 homologues restricted any of a panel of cloned retroviruses. To determine if any mouse TRIM5 homologues had potential for restriction activity each was fused to the HIV-1 CA binding protein cyclophilin A (CypA). The three Trim12-CypA fusions all activated AP-1 and restricted HIV-1 transduction, whereas the Trim30-CypA fusions did neither. AP-1 activation and HIV-1 restriction by the Trim12-CypA fusions was inhibited by disruption of TAK1. Overall then, these experiments demonstrate that there is a strong correlation between TRIM5 retroviral restriction activity and the ability to activate TAK1-dependent innate immune signaling.
IMPORTANCE: The importance of retroviruses for the evolution of susceptible host organisms cannot be overestimated. 8% of the human genome is retrovirus sequence, fixed in the germline during past infection. Understanding how metazoa protect their genomes from mutagenic retrovirus infection is therefore of fundamental importance to biology. TRIM5 is a cellular protein that protects host genome integrity by disrupting the retroviral capsid as it transports viral nucleic acid to the host cell nucleus. Previous data suggest that innate immune signaling contributes to TRIM5-mediated restriction. Here we show that activation of innate immune signaling is conserved among primate and carnivore TRIM5 orthologues, and among 3 of the 7 mouse Trim5 homologues, and that such activity is required for TRIM5-mediated restriction activity
Surface Transmission or Polarized Egress? Lessons Learned from HTLV Cell-to-Cell Transmission
Commentary on Pais-Correia, A.M.; Sachse, M.; Guadagnini, S.; Robbiati, V.; Lasserre, R.; Gessain, A.; Gout, O.; Alcover, A.; Thoulouze, M.I. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 2010, 16, 83–89
The Sec61p Complex Mediates the Integration of a Membrane Protein by Allowing Lipid Partitioning of the Transmembrane Domain
AbstractWe have investigated how the transmembrane (TM) domain of a membrane protein is cotranslationally integrated into the endoplasmic reticulum. We demonstrate that the Sec61p channel allows the TM domain to bypass the barrier posed by the polar head groups of the lipid bilayer and come into contact with the hydrophobic interior of the membrane. Together with the TRAM protein, Sec61p provides a site in the membrane, at the interface of channel and lipid, through which a TM domain can dynamically equilibrate between the lipid and aqueous phases, depending on the hydrophobicity of the TM domain and the length of the polypeptide segment tethering it to the ribosome. Our results suggest a unifying, lipid-partitioning model which can explain the general behavior of hydrophobic topogenic sequences
Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells
Viruses have often been observed in association with the dense microvilli of polarized epithelia as well as the filopodia of nonpolarized cells, yet whether interactions with these structures contribute to infection has remained unknown. Here we show that virus binding to filopodia induces a rapid and highly ordered lateral movement, “surfing” toward the cell body before cell entry. Virus cell surfing along filopodia is mediated by the underlying actin cytoskeleton and depends on functional myosin II. Any disruption of virus cell surfing significantly reduces viral infection. Our results reveal another example of viruses hijacking host machineries for efficient infection by using the inherent ability of filopodia to transport ligands to the cell body
Ca2+ and synaptotagmin VII–dependent delivery of lysosomal membrane to nascent phagosomes
Synaptotagmin (Syt) VII is a ubiquitously expressed member of the Syt family of Ca2+ sensors. It is present on lysosomes in several cell types, where it regulates Ca2+-dependent exocytosis. Because [Ca2+]i and exocytosis have been associated with phagocytosis, we investigated the phagocytic ability of macrophages from Syt VII−/− mice. Syt VII−/− macrophages phagocytose normally at low particle/cell ratios but show a progressive inhibition in particle uptake under high load conditions. Complementation with Syt VII rescues this phenotype, but only when functional Ca2+-binding sites are retained. Reinforcing a role for Syt VII in Ca2+-dependent phagocytosis, particle uptake in Syt VII−/− macrophages is significantly less dependent on [Ca2+]i. Syt VII is concentrated on peripheral domains of lysosomal compartments, from where it is recruited to nascent phagosomes. Syt VII recruitment is rapidly followed by the delivery of Lamp1 to phagosomes, a process that is inhibited in Syt VII−/− macrophages. Thus, Syt VII regulates the Ca2+-dependent mobilization of lysosomes as a supplemental source of membrane during phagocytosis
SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) harbor mutations in the spike (S) glycoprotein that confer more efficient transmission and dampen the efficacy of COVID-19 vaccines and antibody therapies. S mediates virus entry and is the primary target for antibody responses, with structural studies of soluble S variants revealing an increased propensity toward conformations accessible to the human angiotensin-converting enzyme 2 (hACE2) receptor. However, real-time observations of conformational dynamics that govern the structural equilibriums of the S variants have been lacking. Here, we report single-molecule Förster resonance energy transfer (smFRET) studies of critical mutations observed in VOCs, including D614G and E484K, in the context of virus particles. Investigated variants predominately occupied more open hACE2-accessible conformations, agreeing with previous structures of soluble trimers. Additionally, these S variants exhibited slower transitions in hACE2-accessible/bound states. Our finding of increased S kinetic stability in the open conformation provides a new perspective on SARS-CoV-2 adaptation to the human population
Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection
Dendritic cells can capture and transfer retroviruses in vitro across synaptic cell-cell contacts to uninfected cells, a process called trans-infection. Whether trans-infection contributes to retroviral spread in vivo remains unknown. Here, we visualize how retroviruses disseminate in secondary lymphoid tissues of living mice. We demonstrate that murine leukemia virus (MLV) and human immunodeficiency virus (HIV) are first captured by sinus-lining macrophages. CD169/Siglec-1, an I-type lectin that recognizes gangliosides, captures the virus. MLV-laden macrophages then form long-lived synaptic contacts to trans-infect B-1 cells. Infected B-1 cells subsequently migrate into the lymph node to spread the infection through virological synapses. Robust infection in lymph nodes and spleen requires CD169, suggesting that a combination of fluid-based movement followed by CD169-dependent trans-infection can contribute to viral spread
Semen-Derived Amyloid Fibrils Drastically Enhance HIV Infection
SummarySexual intercourse is the major route of HIV transmission. To identify endogenous factors that affect the efficiency of sexual viral transmission, we screened a complex peptide/protein library derived from human semen. We show that naturally occurring fragments of the abundant semen marker prostatic acidic phosphatase (PAP) form amyloid fibrils. These fibrils, termed Semen-derived Enhancer of Virus Infection (SEVI), capture HIV virions and promote their attachment to target cells, thereby enhancing the infectious virus titer by several orders of magnitude. Physiological concentrations of SEVI amplified HIV infection of T cells, macrophages, ex vivo human tonsillar tissues, and transgenic rats in vivo, as well as trans-HIV infection of T cells by dendritic or epithelial cells. Amyloidogenic PAP fragments are abundant in seminal fluid and boost semen-mediated enhancement of HIV infection. Thus, they may play an important role in sexual transmission of HIV and could represent new targets for its prevention
- …