30 research outputs found
Recommended from our members
Identification of Mycobacterium avium genes associated with resistance to host antimicrobial peptides
Antimicrobial peptides are an important component of the innate immune defense. Mycobacterium avium subsp hominissuis (M. avium) is an organism that establishes contact with the respiratory and gastrointestinal mucosa as a necessary step for infection. M. avium is resistant to high concentrations of polymyxin B, a surrogate for antimicrobial peptides. To determine gene-encoding proteins that are associated with this resistance, we screened a transposon library of M. avium strain 104 for susceptibility to polymyxin B. Ten susceptible mutants were identified and the inactivated genes sequenced. The greatest majority of the genes were related to cell wall synthesis and permeability. The mutants were then examined for their ability to enter macrophages and to survive macrophage killing. Three clones among the mutants had impaired uptake by macrophages compared to the wild-type strain, and all ten clones were attenuated in macrophages. The mutants were shown also to be susceptible to cathelicidin (LL-37), in contrast to the wild-type bacterium. All but one of the mutants were significantly attenuated in mice. In conclusion, this study indicated that the M. avium envelope is the primary defense against host antimicrobial peptides
Language for touch: aesthetics, experience and technologies for next generation touch interfaces
Explorations into the aesthetic, experiential, and emotional qualities of human-computer-interaction (HCI) has provided important and valuable insights for designing future interactive systems. This thesis a reflexive process that cycles through the making of an interface and then reflecting on the theory and concepts which affected its design. This process was used during design of three case-studies which explore different qualities of touch and tactile interactions. Analyzing the design process of each case-study reveals four recurring conceptual strands, that are stitched together to construct a cohesive framework for analyzing and understanding the aesthetic and embodied experience of tactile systems: 1.) InterSensory Mapping, 2.)Semantics, 3.)Technology, and 4.) Materiality. This analysis shows the practicality of the framework as being an effective tool for generating unique tactile input devices, which in a broader perspective, offers an example for designers on how to integrate theoretically insights and frameworks in their respective practice
Effect of interaction between acute administration of morphine and cannabinoid compounds on spontaneous excitatory and inhibitory postsynaptic currents of magnocellular neurons of supraoptic nucleus
Objective(s): Opioids and cannabinoids are two important compounds that have been shown to influence the activity of magnocellular neurons (MCNs) of supraoptic nucleus (SON). The interaction between opioidergic and cannabinoidergic systems in various structures of the brain and spinal cord is now well established, but not in the MCNs of SON.
Materials and methods: In this study, whole cell patch clamp recording of neurons in rat brain slice was used to investigate the effect of acute morphine and cannabinoid administration on spontaneous inhibitory and excitatory spostsynaptic currents (sIPSCs and sEPSCs) in MCNs.
Results: Bath application of morphine produced an increase in sEPSCs frequency and a decrease in sIPSCs frequency. In contrast, bath application of URB597 (fatty acid amide hydrolase (FAAH) inhibitor) produced a decrease in sEPSCs frequency but an increase in sIPSCs frequency. WIN55212-2 (cannabinoid receptor agonist) decreased both sIPSCs and sEPSCs frequencies of MCNs. Co-application of morphine and URB597 attenuated the effect of morphine on MCNs.
Conclusion: Taken together, these data indicated that at the cellular level, pharmacological augmentation of endocannabinoids could attenuate morphine effects on MCNs
Pleomorphic Sarcoma in a Patient with Osteopetrosis.
Osteopetrosis comprises a rare, heterogeneous group of heritable conditions that are characterized by a defect in bone resorption by osteoclasts. We report the case of a 53-year-old woman with previously undiagnosed osteopetrosis who presented with a pathologic proximal humeral fracture secondary to pleomorphic sarcoma, which is previously undescribed in the English literature. Management of the primary lesion necessitated ablative surgery, but the malignancy nonetheless was associated with rapidly progressive metastatic disease
Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology.
The entorhinal cortex (EC) is one of the earliest affected brain regions in Alzheimer's disease (AD). EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG) with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were investigated. The amyloid beta (Aβ) 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin) accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days), almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease
Nicotine Exposure Exacerbates Development of Cataracts in a Type 1 Diabetic Rat Model
Diabetes and smoking are known risk factors for cataract development. In this study, we evaluated the effect of nicotine on the progression of cataracts in a type 1 diabetic rat model. Diabetes was induced in Sprague-Dawley rats by a single injection of 65 mg/kg streptozotocin. Daily nicotine injections were administered subcutaneously. Forty-five rats were divided into groups of diabetics with and without nicotine treatment and controls with and without nicotine treatment. Progression of lens opacity was monitored using a slit lamp biomicroscope and scores were assigned. To assess whether systemic inflammation played a role in mediating cataractogenesis, we studied serum levels of eotaxin, IL-6, and IL-4. The levels of the measured cytokines increased significantly in nicotine-treated and untreated diabetic animals versus controls and demonstrated a positive trend in the nicotine-treated diabetic rats. Our data suggest the presence of a synergistic relationship between nicotine and diabetes that accelerated cataract formation via inflammatory mediators