11 research outputs found

    Band offsets of metal oxide contacts on TlBr radiation detectors

    Get PDF
    Metal oxides are investigated as an alternative to metal contacts on thallium bromide (TlBr) radiation detectors. X-ray photoelectron spectroscopy studies of SnO 2/TlBr and ITO/TlBr devices indicate that a type-II staggered heterojunction forms between TlBr and metal oxides upon contacting. By using the Kraut method of valence band offset (VBO) determination, the VBOs of SnO 2/TlBr and ITO/TlBr heterojunctions are determined to be 1.05 ± 0.17 and 0.70 ± 0.17 eV, respectively. The corresponding conduction band offsets are then found to be 0.13 ± 0.17 and 0.45 ± 0.17 eV, respectively. The I-V response of symmetric In/SnO 2/TlBr and In/ITO/TlBr planar devices is almost Ohmic with a leakage current of less than 2.5 nA at 100 V

    Magnetic Damping of Solid Solution Semiconductor Alloys

    Get PDF
    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations

    Reduction of Defects in Germanium-Silicon

    Get PDF
    It is well established that crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached-Bridgman growth is often cited as a promising tool to improve crystal quality, without the limitations of float zoning. Detached growth has been found to occur quite often during microgravity experiments and considerable improvements of crystal quality have been reported for those cases. However, no thorough understanding of the process or quantitative assessment of the quality improvements exists so far. This project will determine the means to reproducibly grow Ge-Si alloys in the detached mode. Specific objectives include: (1) measurement of the relevant material parameters such as contact angle, growth angle, surface tension, and wetting behavior of the GeSi-melt on potential crucible materials; (2) determination of the mechanism of detached growth including the role of convection; (3) quantitative determination of the differences of defects and impurities among normal Bridgman, detached Bridgman, and floating zone (FZ) growth; (4) investigation of the influence of defined azimuthal or meridional flow due to rotating magnetic fields on the characteristics of detached growth; (5) control time-dependent Marangoni convection in the case of FZ-growth by the use of a rotating magnetic field to examine the influence on the curvature of the solid-liquid interface and the heat and mass transport; and (6) grow high quality GeSi-single crystals with Si-concentration up to 10 at% and diameters up to 20 mm

    Band offsets of metal oxide contacts on TlBr radiation detectors

    Get PDF
    Metal oxides are investigated as an alternative to metal contacts on thallium bromide (TlBr) radiation detectors. X-ray photoelectron spectroscopy studies of SnO 2/TlBr and ITO/TlBr devices indicate that a type-II staggered heterojunction forms between TlBr and metal oxides upon contacting. By using the Kraut method of valence band offset (VBO) determination, the VBOs of SnO 2/TlBr and ITO/TlBr heterojunctions are determined to be 1.05 ± 0.17 and 0.70 ± 0.17 eV, respectively. The corresponding conduction band offsets are then found to be 0.13 ± 0.17 and 0.45 ± 0.17 eV, respectively. The I-V response of symmetric In/SnO 2/TlBr and In/ITO/TlBr planar devices is almost Ohmic with a leakage current of less than 2.5 nA at 100 V

    Thallium Bromide Semiconductor Radiation Detectors With Thallium Contacts

    No full text

    Stable room-temperature thallium bromide semiconductor radiation detectors

    No full text
    Thallium bromide (TlBr) is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br− species, with an estimated electro-diffusion velocity of 10−8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br− ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation) for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research
    corecore