7,722 research outputs found
Astrophysical Configurations with Background Cosmology: Probing Dark Energy at Astrophysical Scales
We explore the effects of a positive cosmological constant on astrophysical
and cosmological configurations described by a polytropic equation of state. We
derive the conditions for equilibrium and stability of such configurations and
consider some astrophysical examples where our analysis may be relevant. We
show that in the presence of the cosmological constant the isothermal sphere is
not a viable astrophysical model since the density in this model does not go
asymptotically to zero. The cosmological constant implies that, for polytropic
index smaller than five, the central density has to exceed a certain minimal
value in terms of the vacuum density in order to guarantee the existence of a
finite size object. We examine such configurations together with effects of
in other exotic possibilities, such as neutrino and boson stars, and
we compare our results to N-body simulations. The astrophysical properties and
configurations found in this article are specific features resulting from the
existence of a dark energy component. Hence, if found in nature would be an
independent probe of a cosmological constant, complementary to other
observations.Comment: 23 pages, 11 figures, 2 tables. Reference added. Mon. Not. Roy.
Astro. Soc in prin
Field Theoretical Approach to Electrochemical Deposition
In this work we present an application of the lambda-phi^4 field theoretical
model to the adsorption of atoms and molecules on metallic surfaces - the
electrochemical deposition. The usual approach to this system consists in the
computational simulation using Monte Carlo techniques of an effective
lattice-gas Hamiltonian. We construct an effective model towards a comparison
between the lattice-gas Hamiltonian and the discrete version of the
lambda-phi^4 Hamiltonian, obtaining the relationships between the model
parameters and electrochemical quantities. The lambda-phi^4 model is studied in
the mean field approximation, and the results are fitted and compared to
numerical simulated and experimental data.Comment: 9 pages, 5 figure
Estado Confusional Agudo após Corticoterapia Inalada
Background: The connection between corticotherapy and neuropsychiatric symptoms is
widely known, being one of the first questions
we need to assess when presenting with first
episode psychiatric symptoms or confusional
state.
Aims: To date, data on cases related to inhaled
corticotherapy and neuropsychiatric effects is
scarce. In this paper we describe a rare case in
a young woman.
Methods: The clinical case presented led us
to try to understand the data published on the
subject in order to discuss it in greater length.
Results and Conclusions: We present and
discuss a 27-year-old patient’s case, with no
previous psychiatric disease, who was admitted to our Psychiatric ward after the onset of
severe acute behavioural disturbance characterized by aggressiveness, visual and auditory
hallucinatory activity, misidentification and
altered conscience status. It was later found
that seven days earlier she had been prescribed
inhaled corticotherapy for a minor respiratory
infection. A few days after corticotherapy withdrawal, the clinical symptoms improved significantly.info:eu-repo/semantics/publishedVersio
Diamagnetic response of cylindrical normal metal - superconductor proximity structures with low concentration of scattering centers
We have investigated the diamagnetic response of composite NS proximity
wires, consisting of a clean silver or copper coating, in good electrical
contact to a superconducting niobium or tantalum core. The samples show strong
induced diamagnetism in the normal layer, resulting in a nearly complete
Meissner screening at low temperatures. The temperature dependence of the
linear diamagnetic susceptibility data is successfully described by the
quasiclassical Eilenberger theory including elastic scattering characterised by
a mean free path l. Using the mean free path as the only fit parameter we found
values of l in the range 0.1-1 of the normal metal layer thickness d_N, which
are in rough agreement with the ones obtained from residual resistivity
measurements. The fits are satisfactory over the whole temperature range
between 5 mK and 7 K for values of d_N varying between 1.6 my m and 30 my m.
Although a finite mean free path is necessary to correctly describe the
temperature dependence of the linear response diamagnetic susceptibility, the
measured breakdown fields in the nonlinear regime follow the temperature and
thickness dependence given by the clean limit theory. However, there is a
discrepancy in the absolute values. We argue that in order to reach
quantitative agreement one needs to take into account the mean free path from
the fits of the linear response. [PACS numbers: 74.50.+r, 74.80.-g]Comment: 10 pages, 9 figure
Symmetries and Ambiguities in the linear sigma model with light quarks
We investigate the role of undetermined finite contributions generated by
radiative corrections in a linear sigma model with quarks.
Although some of such terms can be absorbed in the renormalization procedure,
one such contribution is left in the expression for the pion decay constant.
This arbitrariness is eliminated by chiral symmetry.Comment: 9 pages. Added references through the text; an author was added due
to an important contribution; corrected typos; the title also was changed.
Submitted to Modern Physics Letter
Detecting a Lorentz-Violating Field in Cosmology
We consider cosmology in the Einstein-aether theory (the generally covariant
theory of gravitation coupled to a dynamical timelike Lorentz-violating vector
field) with a linear aether-Lagrangian. The 3+1 spacetime splitting approach is
used to derive covariant and gauge invariant perturbation equations which are
valid for a general class of Lagrangians. Restricting attention to the
parameter space of these theories which is consistent with local gravity
experiments, we show that there are tracking behaviors for the aether field,
both in the background cosmology and at linear perturbation level. The
primordial power-spectrum of scalar perturbations in this model is shown to be
the same that predicted by standard general relativity. However, the
power-spectrum of tensor perturbation is different from that in general
relativity, but has a smaller amplitude and so cannot be detected at present.
We also study the implications for late-time cosmology and find that the
evolution of photon and neutrino anisotropic stresses can source the aether
field perturbation during the radiation and matter dominated epochs, and as a
result the CMB and matter power spectra are modified. However these effects are
degenerate with respect to other cosmological parameters, such as neutrino
masses and the bias parameter in the observed galaxy spectrum.Comment: 13 pages, 3 figures; modified version to appear in Physical Review
Ellipsoidal configurations in the de Sitter spacetime
The cosmological constant modifies certain properties of large
astrophysical rotating configurations with ellipsoidal geometries, provided the
objects are not too compact. Assuming an equilibrium configuration and so using
the tensor virial equation with we explore several equilibrium
properties of homogeneous rotating ellipsoids. One shows that the bifurcation
point, which in the oblate case distinguishes the Maclaurin ellipsoid from the
Jacobi ellipsoid, is sensitive to the cosmological constant. Adding to that,
the cosmological constant allows triaxial configurations of equilibrium
rotating the minor axis as solutions of the virial equations. The significance
of the result lies in the fact that minor axis rotation is indeed found in
nature. Being impossible for the oblate case, it is permissible for prolate
geometries, with zero and positive. For the triaxial case, however,
an equilibrium solution is found only for non-zero positive . Finally,
we solve the tensor virial equation for the angular velocity and display
special effects of the cosmological constant there.Comment: 15 pages, 11 figures, published in Class. Quant. Grav. References
adde
Phase Transition and Monopoles Densities in a Nearest Neighbors Two-Dimensional Spin Ice Model
In this work, we show that, due to the alternating orientation of the spins
in the ground state of the artificial square spin ice, the influence of a set
of spins at a certain distance of a reference spin decreases faster than the
expected result for the long range dipolar interaction, justifying the use of
the nearest neighbor two dimensional square spin ice model as an effective
model. Using an extension of the model presented in ref. [Scientific Reports 5,
15875 (2015)], considering the influence of the eight nearest neighbors of each
spin on the lattice, we analyze the thermodynamics of the model and study the
monopoles and string densities dependence as a function of the temperature.Comment: 11 pages, 8 figure
- …
