159 research outputs found

    Mindful movement and skilled attention

    Get PDF
    Bodily movement has long been employed as a foundation for cultivating mental skills such as attention, self-control or mindfulness, with recent studies documenting the positive impacts of mindful movement training, such as yoga and tai chi. A parallel mind-body connection has also been observed in many developmental disorders. We elaborate a spectrum of mindfulness by considering ADHD, in which deficient motor control correlates with impaired (disinhibited) behavioral control contributing to defining features of excessive distractibility and impulsivity. These data provide evidence for an important axis of variation for wellbeing, in which skillful cognitive control covaries with a capacity for skillful movement. We review empirical and theoretical literature on attention, cognitive control, mind wandering, mindfulness and skill learning, endorsing a model of skilled attention in which motor plans, attention, and executive goals are seen as mutually co-defining aspects of skilled behavior that are linked by reciprocal inhibitory and excitatory connections. Thus, any movement training should engage higher-order inhibition and selection and develop a repertoire of rehearsed procedures that coordinate goals, attention and motor plans. However, we propose that mindful movement practice may improve the functional quality of rehearsed procedures, cultivating a transferrable skill of attention. We adopt Langer’s spectrum of mindful learning that spans from mindlessness to engagement with the details of the present task and contrast this with the mental attitudes cultivated in standard mindfulness meditation. We particularly follow Feldenkrais’ suggestion that mindful learning of skills for organizing the body in movement might transfer to other forms of mental activity. The results of mindful movement training should be observed in multiple complementary measures, and may have tremendous potential benefit for individuals with ADHD and other populations

    Cerebellar gray matter and lobular volumes correlate with core autism symptoms

    Get PDF
    AbstractNeuroanatomical differences in the cerebellum are among the most consistent findings in autism spectrum disorder (ASD), but little is known about the relationship between cerebellar dysfunction and core ASD symptoms. The newly-emerging existence of cerebellar sensorimotor and cognitive subregions provides a new framework for interpreting the functional significance of cerebellar findings in ASD. Here we use two complementary analyses — whole-brain voxel-based morphometry (VBM) and the SUIT cerebellar atlas — to investigate cerebellar regional gray matter (GM) and volumetric lobular measurements in 35 children with ASD and 35 typically-developing (TD) children (mean age 10.4 ± 1.6 years; range 8–13 years). To examine the relationships between cerebellar structure and core ASD symptoms, correlations were calculated between scores on the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview (ADI) and the VBM and volumetric data. Both VBM and the SUIT analyses revealed reduced GM in ASD children in cerebellar lobule VII (Crus I/II). The degree of regional and lobular gray matter reductions in different cerebellar subregions correlated with the severity of symptoms in social interaction, communication, and repetitive behaviors. Structural differences and behavioral correlations converged on right cerebellar Crus I/II, a region which shows structural and functional connectivity with fronto-parietal and default mode networks. These results emphasize the importance of the location within the cerebellum to the potential functional impact of structural differences in ASD, and suggest that GM differences in cerebellar right Crus I/II are associated with the core ASD profile

    Two-stage Decompositions for the Analysis of Functional Connectivity for fMRI With Application to Alzheimer\u27s Disease Risk

    Get PDF
    Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with numerous diseases including Alzheimer\u27s disease and mild cognitive impairment. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a case-control functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer\u27s disease risk under a verbal paired associates task. We found empirical evidence of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles

    Covariate Assisted Principal Regression for Covariance Matrix Outcomes

    Get PDF
    In this study, we consider the problem of regressing covariance matrices on associated covariates. Our goal is to use covariates to explain variation in covariance matrices across units. As such, we introduce Covariate Assisted Principal (CAP) regression, an optimization-based method for identifying components associated with the covariates using a generalized linear model approach. We develop computationally efficient algorithms to jointly search for common linear projections of the covariance matrices, as well as the regression coefficients. Under the assumption that all the covariance matrices share identical eigencomponents, we establish the asymptotic properties. In simulation studies, our CAP method shows higher accuracy and robustness in coefficient estimation over competing methods. In an example resting-state functional magnetic resonance imaging study of healthy adults, CAP identifies human brain network changes associated with subject demographics

    The Role of Attention in Somatosensory Processing: A Multi-trait, Multi-method Analysis

    Get PDF
    Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different traits)/cross-trait (e.g., attention and tactile sensitivity) correlations, suggesting that parent-reported tactile sensory dysfunction and performance-based tactile sensitivity describe different behavioral phenomena. Additionally, both parent-reported tactile functioning and performance-based tactile sensitivity measures were significantly associated with measures of attention. Findings suggest that sensory (tactile) processing abnormalities in ASD are multifaceted, and may partially reflect a more global deficit in behavioral regulation (including attention). Challenges of relying solely on parent-report to describe sensory difficulties faced by children/families with ASD are also highlighted

    A vibrotactile behavioral battery for investigating somatosensory processing in children and adults

    Get PDF
    The cortical dynamics of somatosensory processing can be investigated using vibrotactile psychophysics. It has been suggested that different vibrotactile paradigms target different cortical mechanisms, and a number of recent studies have established links between somatosensory cortical function and measurable aspects of behavior. The relationship between cortical mechanisms and sensory function is particularly relevant with respect to developmental disorders in which altered inhibitory processing has been postulated, such as in ASD and ADHD. In this study, a vibrotactile battery consisting of nine tasks (incorporating reaction time, detection threshold, and amplitude- and frequency discrimination) was applied to a cohort of healthy adults and a cohort of typically developing children to assess the feasibility of such a vibrotactile battery in both cohorts, and the performance between children and adults was compared. These results showed that children and adults were both able to perform these tasks with a similar performance, although the children were slightly less sensitive in frequency discrimination. Performance within different task-groups clustered together in adults, providing further evidence that these tasks tap into different cortical mechanisms, which is also discussed. This clustering was not observed in children, which may be potentially indicative of development and a greater variability. In conclusion, in this study, we showed that both children and adults were able to perform an extensive vibrotactile battery, and we showed the feasibility of applying this battery to other (e.g., neurodevelopmental) cohorts to probe different cortical mechanisms
    • …
    corecore