282 research outputs found

    Delta-Function Potential with a Complex Coupling

    Full text link
    We explore the Hamiltonian operator H=-d^2/dx^2 + z \delta(x) where x is real, \delta(x) is the Dirac delta function, and z is an arbitrary complex coupling constant. For a purely imaginary z, H has a (real) spectral singularity at E=-z^2/4. For \Re(z)<0, H has an eigenvalue at E=-z^2/4. For the case that \Re(z)>0, H has a real, positive, continuous spectrum that is free from spectral singularities. For this latter case, we construct an associated biorthonormal system and use it to perform a perturbative calculation of a positive-definite inner product that renders H self-adjoint. This allows us to address the intriguing question of the nonlocal aspects of the equivalent Hermitian Hamiltonian for the system. In particular, we compute the energy expectation values for various Gaussian wave packets to show that the non-Hermiticity effect diminishes rapidly outside an effective interaction region.Comment: Published version, 14 pages, 2 figure

    Pseudo-Unitary Operators and Pseudo-Unitary Quantum Dynamics

    Full text link
    We consider pseudo-unitary quantum systems and discuss various properties of pseudo-unitary operators. In particular we prove a characterization theorem for block-diagonalizable pseudo-unitary operators with finite-dimensional diagonal blocks. Furthermore, we show that every pseudo-unitary matrix is the exponential of i=1i=\sqrt{-1} times a pseudo-Hermitian matrix, and determine the structure of the Lie groups consisting of pseudo-unitary matrices. In particular, we present a thorough treatment of 2×22\times 2 pseudo-unitary matrices and discuss an example of a quantum system with a 2×22\times 2 pseudo-unitary dynamical group. As other applications of our general results we give a proof of the spectral theorem for symplectic transformations of classical mechanics, demonstrate the coincidence of the symplectic group Sp(2n)Sp(2n) with the real subgroup of a matrix group that is isomorphic to the pseudo-unitary group U(n,n), and elaborate on an approach to second quantization that makes use of the underlying pseudo-unitary dynamical groups.Comment: Revised and expanded version, includes an application to symplectic transformations and groups, accepted for publication in J. Math. Phy

    Coherent states of non-Hermitian quantum systems

    Get PDF
    We use the Gazeau-Klauder formalism to construct coherent states of non-Hermitian quantum systems. In particular we use this formalism to construct coherent state of a PT symmetric system. We also discuss construction of coherent states following Klauder's minimal prescription.Comment: to appear in Phys.Lett

    Application of Pseudo-Hermitian Quantum Mechanics to a Complex Scattering Potential with Point Interactions

    Full text link
    We present a generalization of the perturbative construction of the metric operator for non-Hermitian Hamiltonians with more than one perturbation parameter. We use this method to study the non-Hermitian scattering Hamiltonian: H=p^2/2m+\zeta_-\delta(x+a)+\zeta_+\delta(x-a), where \zeta_\pm and a are respectively complex and real parameters and \delta(x) is the Dirac delta function. For regions in the space of coupling constants \zeta_\pm where H is quasi-Hermitian and there are no complex bound states or spectral singularities, we construct a (positive-definite) metric operator \eta and the corresponding equivalent Hermitian Hamiltonian h. \eta turns out to be a (perturbatively) bounded operator for the cases that the imaginary part of the coupling constants have opposite sign, \Im(\zeta_+) = -\Im(\zeta_-). This in particular contains the PT-symmetric case: \zeta_+ = \zeta_-^*. We also calculate the energy expectation values for certain Gaussian wave packets to study the nonlocal nature of \rh or equivalently the non-Hermitian nature of \rH. We show that these physical quantities are not directly sensitive to the presence of PT-symmetry.Comment: 22 pages, 4 figure

    Construction of a unique metric in quasi-Hermitian quantum mechanics: non-existence of the charge operator in a 2 x 2 matrix model

    Get PDF
    For a specific exactly solvable 2 by 2 matrix model with a PT-symmetric Hamiltonian possessing a real spectrum, we construct all the eligible physical metrics and show that none of them admits a factorization CP in terms of an involutive charge operator C. Alternative ways of restricting the physical metric to a unique form are briefly discussed.Comment: 13 page

    Krein-Space Formulation of PT-Symmetry, CPT-Inner Products, and Pseudo-Hermiticity

    Get PDF
    Emphasizing the physical constraints on the formulation of a quantum theory based on the standard measurement axiom and the Schroedinger equation, we comment on some conceptual issues arising in the formulation of PT-symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide an accessible account of a Krein-space derivation of the CPT-inner product that was widely known to mathematicians since 1950's. We show how this derivation is linked with the pseudo-Hermitian formulation of PT-symmetric quantum mechanics.Comment: published version, 17 page

    Path-Integral Formulation of Pseudo-Hermitian Quantum Mechanics and the Role of the Metric Operator

    Full text link
    We provide a careful analysis of the generating functional in the path integral formulation of pseudo-Hermitian and in particular PT-symmetric quantum mechanics and show how the metric operator enters the expression for the generating functional.Comment: Published version, 4 page

    Interactions of Hermitian and non-Hermitian Hamiltonians

    Full text link
    The coupling of non-Hermitian PT-symmetric Hamiltonians to standard Hermitian Hamiltonians, each of which individually has a real energy spectrum, is explored by means of a number of soluble models. It is found that in all cases the energy remains real for small values of the coupling constant, but becomes complex if the coupling becomes stronger than some critical value. For a quadratic non-Hermitian PT-symmetric Hamiltonian coupled to an arbitrary real Hermitian PT-symmetric Hamiltonian, the reality of the ground-state energy for small enough coupling constant is established up to second order in perturbation theory.Comment: 9 pages, 0 figure

    On Pseudo-Hermitian Hamiltonians and Their Hermitian Counterparts

    Full text link
    In the context of two particularly interesting non-Hermitian models in quantum mechanics we explore the relationship between the original Hamiltonian H and its Hermitian counterpart h, obtained from H by a similarity transformation, as pointed out by Mostafazadeh. In the first model, due to Swanson, h turns out to be just a scaled harmonic oscillator, which explains the form of its spectrum. However, the transformation is not unique, which also means that the observables of the original theory are not uniquely determined by H alone. The second model we consider is the original PT-invariant Hamiltonian, with potential V=igx^3. In this case the corresponding h, which we are only able to construct in perturbation theory, corresponds to a complicated velocity-dependent potential. We again explore the relationship between the canonical variables x and p and the observables X and P.Comment: 9 pages, no figure

    Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework

    Full text link
    We show that complex Lie algebras (in particular sl(2,C)) provide us with an elegant method for studying the transition from real to complex eigenvalues of a class of non-Hermitian Hamiltonians: complexified Scarf II, generalized P\"oschl-Teller, and Morse. The characterizations of these Hamiltonians under the so-called pseudo-Hermiticity are also discussed.Comment: LaTeX, 14 pages, no figure, 1 reference adde
    corecore