117 research outputs found

    ISPH modeling of Rayleigh–Taylor instability

    Get PDF
    This paper presents a Smoothed Particle Hydrodynamics (SPH) solution to a Rayleigh-Taylor Instability (RTI) problem in an incompressible viscous two-phase immiscible fluid with an interfacial tension. The evolution of the fluid-fluid interface is numerically investigated for four different density ratios. The simulation outcomes are compared with existing results in literature. Three stages of instability, namely the exponential growth rate, the formation of circular form at the crest of spike and the appearance of the final shape of instability, are discussed for different density ratios. It is shown that the numerical algorithm used in this work is capable of capturing the complete physics behind the RTI, such as interface evolution, growth rate and secondary instability accurately, and successfully

    Improved multiphase smoothed particle hydrodynamics

    Get PDF
    Smoothed Particle Hydrodynamics (SPH) is a relatively new meshless numerical approach which has attracted significant attention in the last 15 years. Compared with the conventional mesh-dependent computational fluid dynamics (CFD) methods, the SPH approach exhibits unique advantages in modeling multiphase fluid flows and associated transport phenomena due to its capabilities of handling complex material surface behavior as well as modeling complicated physics in a relatively simple manner. On the other hand, as SPH is still a developing CFD tool, it is vital to investigate its attributes, namely, advantages or potential limitations in modeling different multiphase flow problems to further understand and then improve this technique. Toward this end, this work aims to design a computational code using SPH method for the simulation of multiphase flows. In this work, we present numerical solutions for flow over an airfoil and square obstacle using both weakly compressible and incompressible SPH method with an improved solid boundary treatment approach, referred to as Multiple Boundary Tangents (MBT) method. It is shown that the MBT boundary treatment technique is very effective for tackling boundaries of complex shapes. Also, we have proposed the usage of the repulsive component of the Leonard Jones Potential (LJP) in the advection equation to repair particle fracture occurring in SPH method due to the tendency of SPH particles to follow the stream line trajectory. This approach is named as the artificial particle displacement method. Furthermore, the proposed method is totalized for the multiphase uid systems and implemented accordingly. The presented model is validated by solving Laplace's law, and square bubble deformation without surface tension whereby it is shown that the implemented SPH discretization does not produce any artificial surface tension. Then, the problem descriptions and solutions for two important hydrodynamic instabilities namely, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, are provided along with their brief analytical linear stability analysis to describe the accuracy and the limitation of the numerical scheme. The long time evolution for both cases are investigated and the comparison between the simulation results and existence theories are provided in details. Finally, we have presented a model to study the deformation of a droplet suspended in a quiescent fluid subjected to the combined effects of surface tension and electric field forces. The electrostatics phenomena are coupled to hydrodynamics through the solution of a set of Maxwell equations. The relevant Maxwell equations and associated interface conditions are simplified relying on the assumptions of the so called leaky dielectric model. All governing equations and the relevant jump and boundary conditions are discretized in space using the SPH method with improved interface and boundary treatments. Numerical results are validated by two highly credential analytical results which are frequently cited in the literature

    A combination of large eddy simulation and physics-informed machine learning to predict pore-scale flow behaviours in fibrous porous media: A case study of transient flow passing through a surgical mask

    Get PDF
    A predictive method using physics-informed machine learning (PIML) and large eddy simulation (LES) is developed to capture the transient flow field through microscale porous media (PSPM). An image processing technique extracts the 3D geometry of the internal layers of the mask from 2D microscopy images, and then the fluid flow is first simulated numerically. The subsequently developed PIML method successfully predicts the transient flow patterns inside the porous medium. For the first time, 3D maps of time-dependent pressure, velocity, and vorticity are predicted across the fibrous porous medium. The results show that, compared to conventional computational fluid dynamics, the PIML method can reduce the computational cost by over 20 times. Further, the LES model can replicate the fine fluctuations caused by the flow passage through the porous medium. Therefore, the developed methodology allows for transient flow predictions in highly complex configurations at a substantially reduced cost. The results indicate that the PIML method can reduce the total computational time (including training and prediction) by 22.5 and 20.7 times over the standard numerical simulation, based on speeds of 0.1 and 0.5 m/s, respectively. Several factors including the inherent differences between CPUs and GPUs, algorithms and software, appear to influence this improvement

    Features of Transition to Turbulence in Sudden Expansion Pipe Flows

    Full text link
    The complex flow features resulting from the laminar-turbulent transition (LTT) in a sudden expansion pipe flow, with expansion ratio of 1:2 subjected to an inlet vortex perturbation is investigated by means of direct numerical simulations (DNS). It is shown that the threshold for LTT described by a power law scaling with -3 exponent that links the perturbation intensity to the subcritical transitional Reynolds number. Additionally, a new type of instability is found within a narrow range of flow parameters. This instability originates from the region of intense shear rate which is a result of the flow symmetry breakdown. Unlike the fast transition, usually reported in the literature, the new instability emerges gradually from a laminar state and appears to be chaotic and strongly unsteady. Additionally, the simulations show a hysteresis mode transition due to the reestablishment of the recirculation zone in a certain range of Reynolds numbers. The latter depends on (i) the initial and final quasi-steady states, (ii) the observation time and (iii) the number of intermediate steps taken when increasing and decreasing the Reynolds number

    Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications

    Get PDF
    Nanofluids are liquid/solid suspensions with higher thermal conductivity, compared to common working fluids. In recent years, the application of these fluids in electronic cooling systems seems prospective. In the present study, the laminar mixed convection heat transfer of different water–copper nanofluids through an inclined ribbed microchannel––as a common electronic cooling system in industry––was investigated numerically, using a finite volume method. The middle section of microchannel’s right wall was ribbed, and at a higher temperature compared to entrance fluid. The modeling was carried out for Reynolds number of 50, Richardson numbers from 0.1 to 10, inclination angles ranging from 0° to 90°, and nanoparticles’ volume fractions of 0.0–0.04. The influences of nanoparticle volume concentration, inclination angle, buoyancy and shear forces, and rib’s shape on the hydraulics and thermal behavior of nanofluid flow were studied. The results were portrayed in terms of pressure, temperature, coefficient of friction, and Nusselt number profiles as well as streamlines and isotherm contours. The model validation was found to be in excellent accords with experimental and numerical results from other previous studies

    Numerical simulation of compressible flows by lattice Boltzmann method

    No full text
    International audienc

    Aero/Hydrodynamics and Symmetry

    No full text
    International audienc

    Numerical simulation of compressible flows by lattice Boltzmann method

    No full text
    International audienceIn this article, we propose a numerical framework based on multiple relaxation time lattice Boltzmann (LB) model and novel discretization techniques for simulating compressible flows. Highly efficient finite difference lattice Boltzmann methods are employed to simulate one- and two-dimensional compressible flows. These numerical techniques are applied on the single- and multiple-relaxation-time on the 16-discrete-velocity (Kataoka and Tsutahara, Phys. Rev. E, 69(5):056702, 2004) compressible lattice Boltzmann model. The Boltzmann equation is discretized via modified Lax-Wendroff and modified total variation diminishing schemes which have ability to damps oscillations at discontinuities, effectively. The results of compressible models are compared and validated with the well-known inviscid compressible flow benchmark test cases, so called Riemann problems. The proposed method shows its superiority over available techniques when compared to the analytical solutions. It is then used to solve two-dimensional inviscid compressible flow benchmarks, including regular shock reflection and Richtmyer–Meshkov instability problems to ensure its applicability for more complex problems. It is found that, the applied discretization techniques improve the stability of original LB models and enhance the robustness of compressible flow problems by preventing the formation of oscillation
    • …
    corecore