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Abstract- This paper presents a Smoothed Particle
Hydrodynamics (SPH) solution to a Rayleigh-Taylor Instability
(RTI) problem in an incompressible viscous two-phase
immiscible fluid with an interfacial tension. The evolution of
the fluid-fluid interface is numerically investigated for four
different density ratios. The simulation outcomes are
compared with existing results in literature. Three stages of
instability, namely the exponential growth rate, the formation
of circular form at the crest of spike and the appearance of the
final shape of instability, are discussed for different density
ratios. It is shown that the numerical algorithm used in this
work is capable of capturing the complete physics behind the
RTI, such as interface evolution, growth rate and secondary
instability accurately, and successfully.

. INTRODUTION

Instability at the interface between two horizontal
parallel fluids of different viscosities and derestwith the
heavier fluid at the top and the lighter at thetdmot is
known as the Rayleigh—Taylor Instability (RTI) tortour
the pioneering works of Lord Rayleigh [1] and GTaylor
[2]. This phenomenon can be observed in a wideearig
natural and astrophysical events. The instabilitjiates
when a multiphase fluid system with different déasi
experiences gravitational force. As a result, astable
disturbance tends to grow in the direction of the
gravitational field, thereby releasing the potdntiaergy of
the system and reducing the combined potentialggnef
the fluids. Due to being an important phenomenomamny
fields of engineering and sciences, the RTI has badely
investigated by using experimental [3, 4], anafit[&, 6] as
well as numerical approaches [7, 8].

The Smoothed Particle Hydrodynamics (SPH) is a
relatively new numerical approach that has attthcte
significant attention in the last 15 years. Comgaséth the
conventional mesh-dependent computational fluidadyics
(CFD), the SPH method exhibits unique advantages in
modelling fluid flows and associated transport pimana
due to its capabilities of handling complex matesiaface
behaviour as well as modelling complicated physica
relatively simple manner.

There are a few works which have used the SPH mdetho
to model the RTI problem [12-15]. Cummins and Rudma
[9] solved the RTI phenomenon using a projectionhod-
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based Incompressible SPH (ISPH) approach. Tart&kaits

al. [10] modelled the Rayleigh-Taylor instabilityr ia
multiphase and multi-component mixture with the Whea
Compressible SPH (WCSPH) method through solving
momentum balance and species mass balance equations
concurrently. Hu and Adams [11] solved the RTI peat

as a benchmarking problem through combining prigact
methods used in [9] and [12]. More recently Greriegl.
[13] presented a WCSPH formulation for simulating
interface flows, and model the RTI to validate thei
numerical scheme. It should be emphasized herentha

of these cited works has included the effect of shdace
tension in their simulations. These works handfedRTI as

a validation test case for their algorithm and ddad focus

on the physics of the problem in detail.

The aim of this work is to simulate the RTI by ugihe
ISPH method, thereby showing the ability of the SPH
technique to capture this hydrodynamic instabilépd
relevant physics for a wide range of density ratibhe
current presentation differs from earlier works the
following aspects: Even though multiphase grid-base
methods considered the RTI problem in detail, & baen
barely considered within the context of the SPH hoet
and if so, mainly for the density ratio @f / o, =1.8.

II.  SVMOOTHED PARTICLE HYDRODYNAMICS
A. Introduction

Initially developed to solve the astrophysics peobs in
1977 by Gingold and Monaghan, and Lucy in separate
works [14, 15], and later extended to solve a wialéety of
fluid dynamics problems [16-18], SPH is a member of
Lagrangian methods. The SPH method is based on the
smoothing of the hydrodynamics properties of fluid
elements, which are represented by movable poait (
referred to as particles), over the solution domaing a

weighting function, W(r,.h), or in short W,. The

ij?
weighting functionW, (also known as the kernel function in
the SPH literature) is an arbitrary function (egponential,
spline, and etc.) with some special propertiesstsd [19].
Here, r. is the magnitude of the distance vector

]

(r, =T, —T,) between the particle of interestand its
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neighbour j, T, is the position vector defining the center

point of the kernel function andh defines the support
domain’slength of the particle of interest.

The integral estimate or the kernel approximatomn
arbitrary function f (7,) or briefly f, can be introduced as

f,O(f,) =] fw . (1)

Replacing the integration in Eqg. (1) with SPH
summation over particley and setting the infinitesimal

volume elementd®, to the inverse of the number
densityl/y, , one can write the SPH interpolation for any
arbitrary field f, as.

f=> tW iy, )
where the number density, for the particlei is defined as
w=3 W, ®

which is also equal t¢, = o, /m.

The SPH approximation for the gradient of the aabyt
function f, can be introduced as

of f. OW.
0% zlt//,» 0%

An alternative and more accurate SPH approximation
for the gradient of a vector-valued function in fleem of
the SPH interpolation can be introduced as

afip _ (fjp—fip) a\Ni.
Ty e

where a° = Z:j(rjik Iy, )(()W”. /axf) is a corrective second-

rank tensor. This form is referred to as the cdirecSPH
gradient formulation that can be used to eliminzaeticle
inconsistencies. It should be noted that the cowederm

af is ideally equal to Kronecker deltd® for a continuous
function.

®)

There are also different ways to approximate tloerss-
order derivative within the context of SPH [16].rdbghout
this work, all modeling results are obtained witle isage
of following corrective spatial second-order SPH
discretization schemes

A () P 1Y
Wq;’m—szz(fip f;p)?z a>g“‘J )
01" o1 (e oW,
el Rl D Ul e

Since the former one is only valid for divergenceef
vector- valued functions, throughout this workisiused for
the Laplacian of the velocity, whereas the latez tnused
for the Laplacian of the pressure in the pressuwissBn
equation.

Finally in the present simulations, the compactipmorted
two-dimensional quintic spline is used.

3-5) -6(2-5) +1q¥s) if G5 <:

(
Wir,h)=a (
(r.n) (

3-5) -6(2-5) fiss<2 g
3-5) if 2<5 <3
if 5,23

Here, s, =1, /h and the spline coefficient is equal to
71478’ for 2-D quintic spline.

B. Governing equations

We consider incompressible immiscible two phase
Newtonian fluids. The motions of such fluids arergmed
by the conservation of mass and momentum equations,
which are respectively given in the Lagrangian farsn

Dp/Dt =-pV, )
pDV/ Dt=Ceg +f° + pg, (10)

where v is the fluid velocity vectorpo is the fluid density,

6 is the total stress tensag,is gravitational force, andi®

is the surface tension force. The total stressefined as,
6 =—pl +T where p is the absolute pressuré, is the

identity tensor, andT :,u(D\?+(D\7)T) is the viscous part
of the total stress tensor, whete is the dynamic viscosity.
Finally, D/ Dt is the material time derivative operator.

C. Computation of the surface tension force

The surface tension force is modelled using the
Continuum Surface Force (CSF) approach where the
interfacial force is only supported at the fluidifl interface
with finite thickness, and is absent in the bulleré] it is
assumed that the surface tension coefficigns constant.

In the CSF model [20], the surface tension force yoet

volume f *is defined as
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fs=okiid®, (11)
where i is the unit normal vector to the interface,is the

curvature of the interface and® is a normalized surface
delta function.

We assign colour valugd = 0 andC = 1 to all particles
to differentiate between phase 1 and phase 2, ctgply.
On the interface, we smooth the colour function by

C= zivv” c/ Zjvv” : (12)
Then the unit normai is computed by
A =0C/|0C]. (13)
Further the curvature is calculated using
Kk ==0en. (14)

There are many possible choicesgfarbut in practice,
it is often approximated a8° =|0C]| [21].

D. Numerical scheme

For the time marching in the ISPH approach, we have
used a first-order Euler time step s_(%nheme. Henadicles
are moved from their current positioh§ with their current

velocities " at timet" to their new estimated positions at
' attimet" + At , which is given by

F=r+vlAt .

(15)

Afterwards, the intermediate velociti€s are computed

on these temporary particle locations through thetion of
the momentum balance equations with forward time
integration by omitting the pressure gradient tasm

v, =vi" +f0AL .

(16)

Then, at the correction step, we corréct by solving
the equation

v =v'- (At p)Op™, (17)

with the incompressibility constraint @«v"™ = 0.

The divergence of Eq. (17) leads to the pressuigsto
equation as

0.V /At =0«(0Op/ p) . (18)

The boundary condition for the pressure is obtaimgd
projecting Eq. (18) on the outward unit normal eedi to
the boundary. Thus, we obtain the Neumann boundary
condition
(plAt)V «R=0pehi . (29)
For stationary no-slip walls, Eq. (19) takes tharfmf
the Neumann boundary conditioflp-ii . Finally, with the

correct velocity field for t™, all fluid particles are

advected to their new positioi§™ using an average of the
previous and current particle velocities as

F = +0.5(v +v0 ) at. (20)

To enhance the robustness of the model, and cirenimv
the particle disorderness and fracture induced ngaie
problems, artificial particle displacement approdhused
in advecting particle positions [16].

Il.  DEFINITION OF PROBLEM

The RTI can occur in a multiphase fluid system weheer
layer of heavy fluid is placed on top of anothselaof light
fluid with an interface having a small initial pemrbation.
This disturbance will grow to produce spikes of\ihefiuids
moving downward into the lighter fluid, and bubblefsthe
lighter fluid moving upward. For modeling the RTI
phenomena, a rectangular computational domain thith
dimensions of §, H] x [0, 2H] is used. For simplicityH is
chosen to be unityH=1m). The number of particles for
each fluid region is the same. An initial sinusbida
perturbation is applied to the fluid—fluid interéathrough
swapping the colour fields of particles in the wity of the
perturbation. The magnitude of the perturbation is
(/H~0.05), wheré, is the initial amplitude of the applied
disturbance. In all simulations, solid boundaries @eated
using Multiple Boundary Tangents (MBT) method [22hd
the no-slip boundary conditions are imposed on siéd
boundaries.

To be able to show the effect of density on the, R
have conducted simulations for several density
ratios,p, / p,, where the density of the lower fluid layer is
set to bep, =1000(kg/ n?), unless stated otherwise. When
all modelling parameters are active, the surfacesita
force per unit lengtho) acts only on the interface particles
in the unit normal direction, while the gravitg)(acts in
downward direction on all particles. Also, to belealto
show the effect of Bond numbeBo, on the RT instability
we have kept the value of gravity constagt @09 m/s?)
and changed the surface tension coefficient accghgi
The Bond number is a dimensionless number thatateve
the importance of surface tension forces compardabty
forces, and is defined aBo=Apgl’/o wherel is the

characteristic length scale, which is taken asnticth of the
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domain) = H in this work, andAp = p, — p,. A high Bo
number indicates that the surface tension hasinds&nce
in the flow system, while a lonBo number indicates that
surface tension dominates.

IV.  VALIDATION AND CONVERGENCE

In order to demonstrate convergence, we have ctaduc
numerical simulations with three different particle
resolutions, namely, 60x120, 100x200 and 200x4a§).
shows the interface shape for these simulations at

t(g/H)*®* =5.0 for the Reynolds number of (Re=420)

where Re= p,\/gH® /i,. In these simulations, the initial

fluid-fluid interface is disturbed using the reda
y=1-0.15sin(27x jand the two-phase fluid system has

density and viscosity ratios gb,/ p, =1.8 (p, =1kg/ nt)
and y, / y, =1.8( i, =1Pas), respectively.

For the long term time evolution of the instabilipne
can notice that the solution has converged. Howether
particle resolution of 60x120 is insufficient toptare the
development of small scale structures, namelye¢cersdary
instability, in the outer core region of the rop-uin
particular, see the top-left side of Fig.1). Nekeless, one
can still see the inception of this secondary iitg at the
interface. As for the particle resolution of 10082Qhe
number of particles is sufficient to predict thiscendary
roll-up at the fluid-fluid interface. Finally, at0px400, the
particle resolution is fine enough to be able poedall
these small scale phenomena and to capture sharpdcu
interfaces in the solution domain. Since the ingesiobn of
these small scale secondary instabilities is netfttus of
our current presentation, in the rest of the paer particle
resolution of 100x200 is used to simulate the Rdbfem.

Furthermore, we have shown in Fig. 2 that even with

low particle resolution (60x120), the ISPH modelptoyed

in this work can produce a result which is in a d@oo
agreement with that of Level Set reported in [13, This
can be attributed to the faster convergence ratbeoSPH
method than the Level set method. One should a$ioen
from Fig. 2 that unlike the WCSPH approach [13§ I8PH
method can capture the onset of the secondarybitista
without necessitating the usage of high partict®lgion. It
should also be noted that the current ISPH treatmiethe
RTI problem captures the strong roll-up in the caggion
of the instability, hence implying that the modeled not
suffer from the artificial surface tension effet8].

T T
®  BOx120

+ 100 x 200
200 > 400

wH

aH
Figure 1. Spatial convergence of Rayle-Taylor instability usin¢three
different particle resolution, namely, 60x120, 1208 and 200x400 at

t(g/H)** =5.0

2l e LS (Grenierst al[13]) 312 <624
* WCSPH (Grenier et al [13]) 300 x 600
ISPH {Current work) B0 x 120

Figure 2. The comparison of ISPH solutions for Re-Taylor instability
with WCSPH and LS reported in [13].

V. RESULTS

To illustrate the influence of density ratio on fRe&l, in
Fig.3, we present the sequence of the evolutiorthef
interface for the density ratios ofo,/ p, =2, 5 and100,
respectively at the Reynolds number of 300 andBbed
number of 100, where the left half of each subfgushows
the particle distribution, whereas the right hakégents the
pressure contours.

There are three apparent stages in the developafent
the instability. The first stage corresponds tdieatimes in
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Figure 3. The sequence of the evolution of the interface from a single mode perturbation for density ratio of o,/ p, =2 at the Reynolds number,
of 300 and the Bond number of 100, where the left half of each subfigures shows the particle distribution, whereas the right half presentsthe

pressure contours.
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Figure 4. The sequence of the evolution of the interface from a single mode perturbation for density ratio of p,/ p, =5 at the Reynolds number
of 300 and the Bond number of 100, where the left half of each subfigures shows the particle distribution, whereas the right half presentsthe

jpressure contours.



6" international SPHERIC workshop Hamburg, Germany, June 08-10, 2011

e xH xrH
300

200

100

®) =075 ) g™ =108

300

200

100

@ e =141 @ g™ =174 @ e =207

300

200

100

% 05 1 06 b5 1 0 05 1
@ e =240 @) yeE™=273  ® e =306

Figure 5. The sequence of the evolution of the interface from a single mode perturbation for density ratio of o,/ p, =100 at the Reynolds

number of 300 and the Bond number of 100, where the | eft half of each subfigures shows the particle distribution, whereas the right half presents
the pressure contours.
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simulations where the initial disturbance grows
exponentially, and the fluid layers retain theiritiéd
sinusoidal shape as can be seen from the firstofdvigs.3
through 5. At this stage, the shape of the RTlaipiity is
the same for all density ratios albeit the diffeesin the
growth rate. The growth rate increases with indreps
density ratio. At the second stage, the leadindespi
supported by a column of heavier fluids (so-calem)
develop and circular shapes on the crest of tHesyppear
(see the second row of Figs.3 through 5). It shdog
observed that, for lower density ratios, the stewider and
the circular tip of the stem has a larger radius.

The last stage corresponds to the formation offitred
shape of the instability before its impact on thegtisnary
wall. At this stage, the stem elongates and gétsi¢h, and
the lighter fluid is entrained into the circularograt the
trough of the spike. The instability has differgatterns for
different density ratios. For a lower density ratize crest
of the spike acquires a mushroom cap shape. titedrthat
the entrainment of the lighter fluid leads to trénrrough
for the lower density ratios; however for the higldensity
ratios the stem has approximately uniform widthirtyiits
elongation and the spike conserves its circulapslisee the
last row of Figs.3 through 5). It is worthy of miemting that
for higher density ratios, namety/ o, >10, the dramatic

differences in the shape of spike and bubble becles®
pronounced. Density ratio affects the growth ratethe
instability. However, the transient and final shapé the
instability are rather independent of the densitior

It should be further noted that as the densityorati
increases, the pressure at the tip of the spike getater.
This can be explained considering the potentiargnef
the fluid. The heavier the fluid, the higher itgtiad potential
energy is. This potential energy is converted ® kmetic
energy as the instability grows. In time, the fligtl slows
down as it approaches to the bottom stationary. wiibn
the impact on the wall, the spike feels higher gues region
at its crest due to the deceleration of fluid jet.

VI. CONCLUSION

Under the assumption of 2D incompressible immiscibl
two-phase viscous flow, a parametric investigatibrthe
Rayleigh-Taylor instability of a fluid layer resgnon the
second lighter fluid was performed. Having testéw t
spatial convergence, and validated the model wetults
available in the literature, we investigated théeef of
density ratio on the RT instability. It was numaiig
illustrated that the density ratio has a significafiect on
the evolution and the final shape of the instapbilit
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