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Abstract- This paper presents a Smoothed Particle 
Hydrodynamics (SPH) solution to a Rayleigh-Taylor Instability 
(RTI) problem in an incompressible viscous two-phase 
immiscible fluid with an interfacial tension. The evolution of 
the fluid-fluid interface is numerically investigated for four 
different density ratios. The simulation outcomes are 
compared with existing results in literature. Three stages of 
instability, namely the exponential growth rate, the formation 
of circular form at the crest of spike and the appearance of the 
final shape of instability, are discussed for different density 
ratios. It is shown that the numerical algorithm used in this 
work is capable of capturing the complete physics behind the 
RTI, such as interface evolution, growth rate and secondary 
instability accurately, and successfully. 

I. INTRODUTION 

Instability at the interface between two horizontal 
parallel fluids of different viscosities and densities with the 
heavier fluid at the top and the lighter at the bottom is 
known as the Rayleigh–Taylor Instability (RTI) to honour 
the pioneering works of Lord Rayleigh [1] and G. I. Taylor 
[2]. This phenomenon can be observed in a wide range of 
natural and astrophysical events. The instability initiates 
when a multiphase fluid system with different densities 
experiences gravitational force. As a result, an unstable 
disturbance tends to grow in the direction of the 
gravitational field, thereby releasing the potential energy of 
the system and reducing the combined potential energy of 
the fluids. Due to being an important phenomenon in many 
fields of engineering and sciences, the RTI has been widely 
investigated by using experimental [3, 4], analytical [5, 6] as 
well as numerical approaches [7, 8].  

 
The Smoothed Particle Hydrodynamics (SPH) is a 

relatively new numerical approach that has attracted 
significant attention in the last 15 years. Compared with the 
conventional mesh-dependent computational fluid dynamics 
(CFD), the SPH method exhibits unique advantages in 
modelling fluid flows and associated transport phenomena 
due to its capabilities of handling complex material surface 
behaviour as well as modelling complicated physics in a 
relatively simple manner. 

 
There are a few works which have used the SPH method 

to model the RTI problem [12-15]. Cummins and Rudman 
[9] solved the RTI phenomenon using a projection method-

based Incompressible SPH (ISPH) approach. Tartakovsky et 
al. [10] modelled the Rayleigh-Taylor instability in a 
multiphase and multi-component mixture with the Weakly 
Compressible SPH (WCSPH) method through solving 
momentum balance and species mass balance equations 
concurrently. Hu and Adams [11] solved the RTI problem 
as a benchmarking problem through combining projection 
methods used in [9] and [12]. More recently Grenier et al. 
[13] presented a WCSPH formulation for simulating 
interface flows, and model the RTI to validate their 
numerical scheme. It should be emphasized here that none 
of these cited works has included the effect of the surface 
tension in their simulations. These works handled the RTI as 
a validation test case for their algorithm and did not focus 
on the physics of the problem in detail.  

 
The aim of this work is to simulate the RTI by using the 

ISPH method, thereby showing the ability of the SPH 
technique to capture this hydrodynamic instability and 
relevant physics for a wide range of density ratios. The 
current presentation differs from earlier works in the 
following aspects: Even though multiphase grid-based 
methods considered the RTI problem in detail, it has been 
barely considered within the context of the SPH method, 
and if so, mainly for the density ratio of 2 1/ 1.8ρ ρ = . 

 
II.  SMOOTHED PARTICLE HYDRODYNAMICS 

 
A.  Introduction 

 
Initially developed to solve the astrophysics problems in 

1977 by Gingold and Monaghan, and Lucy in separate 
works [14, 15], and later extended to solve a wide variety of 
fluid dynamics problems [16-18], SPH is a member of 
Lagrangian methods. The SPH method is based on the 
smoothing of the hydrodynamics properties of fluid 
elements, which are represented by movable points (also 
referred to as particles), over the solution domain using a 

weighting function, ( )ijW r ,h , or in short ijW . The 

weighting function ijW (also known as the kernel function in 

the SPH literature) is an arbitrary function (e.g. exponential, 
spline, and etc.) with some special properties as listed [19]. 
Here, ijr  is the magnitude of the distance vector 

( ij i jr r r= −
� � �

) between the particle of interest i and its 
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neighbour j , ir
�

 is the position vector defining the center 

point of the kernel function and h  defines the support 
domain’s length of the particle of interest. 

 
The integral estimate or the kernel approximation to an 

arbitrary function ( )irf
�

 or briefly if  can be introduced as 

 
3

i i j ij jrf f f W d
Ω

≅ ≡ ∫
�

.      (1) 

 
Replacing the integration in Eq. (1) with SPH 

summation over particle j  and setting the infinitesimal 

volume element 3

jrd
�

 to the inverse of the number 

density1/ jψ , one can write the SPH interpolation for any 

arbitrary field if  as. 
 

/i j ij jj
f f W ψ=∑ ,      (2) 

 
where the number density iψ  for the particle i is defined as  

  

i ijj
Wψ =∑ ,                                    (3) 

 
which is also equal to /i i imψ ρ= . 
 

The SPH approximation for the gradient of the arbitrary 
function if  can be introduced as 

 

j iji

j
i j i
k k

f Wf

x xψ
∂∂

=
∂ ∂∑ .      (4) 

 
An alternative and more accurate SPH approximation 

for the gradient of a vector-valued function in the form of 
the SPH interpolation can be introduced as 

 

( )j i iji
ij j

i j i

p pp
ks

k s

f f Wf
a

x xψ
− ∂∂ =

∂ ∂∑ ,                   (5) 

 

where ( )( )/ /ij ji j ij ij

ks k sa r W xψ= ∂ ∂∑ is a corrective second-

rank tensor. This form is referred to as the corrective SPH 
gradient formulation that can be used to eliminate particle 
inconsistencies. It should be noted that the corrective term 

ij
ksa is ideally equal to Kronecker delta ksδ for a continuous 

function.  
 

There are also different ways to approximate the second-
order derivative within the context of SPH [16]. Throughout 
this work, all modeling results are obtained with the usage 
of following corrective spatial second-order SPH 
discretization schemes 

 

( ) ( )
2

2

1
8 ij iji

ij i jj
i i j ij i

r pp

pm p p

k k m

r Wf
a f f

x x r xψ
∂∂

= −
∂ ∂ ∂∑

�

,        (6) 

( ) ( )
2

2

1
2 8 ij iji

ij i jj
i i j ij i

sp
ll p p

k k s

r Wf
a f f

x x r xψ
∂∂

+ = −
∂ ∂ ∂∑ .      (7) 

 
Since the former one is only valid for divergence free 

vector- valued functions, throughout this work, it is used for 
the Laplacian of the velocity, whereas the later one is used 
for the Laplacian of the pressure in the pressure Poisson 
equation.  

 
Finally in the present simulations, the compactly supported 
two-dimensional quintic spline is used. 

 

( )

( ) ( ) ( )
( ) ( )
( )

5 5 5

5 5

5

3 6 2 15 1 0 1

3 6 2 1 2
,

3 2 3

0 3

ij ij ij ij

ij ij ij

ij

ij ij

ij

if

if

if

if

s s s s

s s s
W r h

s s

s

α

 − − − + − ≤ <

 − − − ≤ <= 
 − ≤ ≤

 ≥

.   (8) 

 
Here, /ij ijs r h=  and the spline coefficient α is equal to 

27 / 478 hπ for 2-D quintic spline. 
 

B. Governing equations 
 

We consider incompressible immiscible two phase 
Newtonian fluids. The motions of such fluids are governed 
by the conservation of mass and momentum equations, 
which are respectively given in the Lagrangian form as  

 
/ vD Dtρ ρ= − ∇ �i ,      (9) 

/v = σ f gSD Dtρ ρ∇ + +
� ��

i ,                      (10) 

 
where v

�

 is the fluid velocity vector, ρ  is the fluid density, 

σ  is the total stress tensor, g
�

is gravitational force, and f S
�

 

is the surface tension force. The total stress is defined as, 
σ I Tp= − + where p is the absolute pressure, I  is the 

identity tensor, and ( )( )T v+ v
Tµ= ∇ ∇� �

is the viscous part 

of the total stress tensor, where µ  is the dynamic viscosity. 

Finally, /D Dt is the material time derivative operator. 
 
C. Computation of the surface tension force 

 
The surface tension force is modelled using the 

Continuum Surface Force (CSF) approach where the 
interfacial force is only supported at the fluid-fluid interface 
with finite thickness, and is absent in the bulk. Here, it is 
assumed that the surface tension coefficient σ is constant. 
In the CSF model [20], the surface tension force per unit 
volume f S

�

is defined as 
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f nS Sσκ δ=
� �

,                              (11) 
 

where n
�

 is the unit normal vector to the interface, κ  is the 
curvature of the interface and Sδ  is a normalized surface 
delta function. 

 
We assign colour values C = 0 and C = 1 to all particles 

to differentiate between phase 1 and phase 2, respectively. 
On the interface, we smooth the colour function by 

 

i ij j ijj j
C W C / W=∑ ∑ .    (12) 

 
Then the unit normaln

�

is computed by 
 

/n C C= ∇ ∇
�

.                            (13) 

 
Further the curvature is calculated using 

 
nκ = −∇
�

i .                               (14) 
 

There are many possible choices forSδ , but in practice, 
it is often approximated as S Cδ ≈ ∇ [21]. 

 
D. Numerical scheme 

 
For the time marching in the ISPH approach, we have 

used a first-order Euler time step scheme. Hence, particles 
are moved from their current positions 

( )n
ir
�

 with their current 

velocities 
( )n
iv
�

 at time nt  to their new estimated positions at 
*

ir
�

 at time nt t+ ∆ , which is given by 
 

( ) ( )*

i i ir r vn n t= + ∆
� � �

.                          (15) 

 
Afterwards, the intermediate velocities 

*
iv
�

 are computed 

on these temporary particle locations through the solution of 
the momentum balance equations with forward time 
integration by omitting the pressure gradient term as 

 
( ) ( )*

i i iv v fn n t= + ∆
�

� �

.                          (16) 

 
Then, at the correction step, we correct *

iv
�

 by solving 
the equation 

 

( )( 1) * ( 1)/v v -n nt pρ+ += ∆ ∇� �

,                   (17) 

 

with the incompressibility constraint of ( )1 0v n+∇ =�

i .                                 
 

The divergence of Eq. (17) leads to the pressure Poisson 
equation as 

 

( )* / /v t p ρ∇ ∆ = ∇ ∇�

i i .                    (18) 

The boundary condition for the pressure is obtained by 
projecting Eq. (18) on the outward unit normal vector n

�

to 
the boundary. Thus, we obtain the Neumann boundary 
condition 
 

*( )/ v n= nt pρ ∆ ∇� ��

i i .                          (19) 

 
For stationary no-slip walls, Eq. (19) takes the form of 

the Neumann boundary condition, np∇ �

i . Finally, with the 

correct velocity field for ( 1)nt + , all fluid particles are 

advected to their new positions ( )1

ir n+�  using an average of the 
previous and current particle velocities as  

 
( ) ( ) ( ) ( )( )1 10.5i i i ir r v vn n n n t+ += + + ∆
� � � �

.            (20) 

 
To enhance the robustness of the model, and circumvent 

the particle disorderness and fracture induced numerical 
problems, artificial particle displacement approach is used 
in advecting particle positions [16].  
   

III.  DEFINITION OF PROBLEM 
 

The RTI can occur in a multiphase fluid system where a 
layer of heavy fluid is placed on top of another layer of light 
fluid with an interface having a small initial perturbation. 
This disturbance will grow to produce spikes of heavy fluids 
moving downward into the lighter fluid, and bubbles of the 
lighter fluid moving upward. For modeling the RTI 
phenomena, a rectangular computational domain with the 
dimensions of [0, H] × [0, 2H] is used. For simplicity, H is 
chosen to be unity (H=1m). The number of particles for 
each fluid region is the same. An initial sinusoidal 
perturbation is applied to the fluid–fluid interface through 
swapping the colour fields of particles in the vicinity of the 
perturbation. The magnitude of the perturbation is 
(ζo/H≈0.05), where ζo is the initial amplitude of the applied 
disturbance. In all simulations, solid boundaries are treated 
using Multiple Boundary Tangents (MBT) method [22], and 
the no-slip boundary conditions are imposed on the solid 
boundaries.  

 
To be able to show the effect of density on the RTI, we 

have conducted simulations for several density 
ratios, 2 1/ρ ρ , where the density of the lower fluid layer is 

set to be 1 1000ρ = (kg/ m3), unless stated otherwise. When 
all modelling parameters are active, the surface tension 
force per unit length (σ) acts only on the interface particles 
in the unit normal direction, while the gravity (g) acts in 
downward direction on all particles. Also, to be able to 
show the effect of Bond number, Bo , on the RT instability 
we have kept the value of gravity constant (g=0.09 m/s2) 
and changed the surface tension coefficient accordingly. 
The Bond number is a dimensionless number that reveals 
the importance of surface tension forces compared to body 
forces, and is defined as 2 /Bo glρ σ= ∆   where l  is the 
characteristic length scale, which is taken as the width of the 
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domain,l H=  in this work, and 2 1ρ ρ ρ∆ = − . A high Bo  
number indicates that the surface tension has less influence 
in the flow system, while a low Bo  number indicates that 
surface tension dominates. 

 
IV.  VALIDATION AND CONVERGENCE 

 
In order to demonstrate convergence, we have conducted 

numerical simulations with three different particle 
resolutions, namely, 60×120, 100×200 and 200×400. Fig. 1 
shows the interface shape for these simulations at 

0.5( / ) 5.0t g H =  for the Reynolds number of (Re=420) 

where 3

2 2Re /gHρ µ= . In these simulations, the initial 

fluid-fluid interface is   disturbed using the relation 
1 0.15sin(2 )y xπ= − and the two-phase fluid system has 

density and viscosity ratios of 2 1/ 1.8ρ ρ =  ( 1 1ρ = kg/ m3) 

and 2 1/ 1.8µ µ = ( 1 1µ = Pas), respectively. 
 
For the long term time evolution of the instability, one 

can notice that the solution has converged. However, the 
particle resolution of 60×120 is insufficient to capture the 
development of small scale structures, namely the secondary 
instability, in the outer core region of the roll-up (in 
particular, see the top-left side of Fig.1). Nevertheless, one 
can still see the inception of this secondary instability at the 
interface. As for the particle resolution of 100×200, the 
number of particles is sufficient to predict this secondary 
roll-up at the fluid-fluid interface. Finally, at 200×400, the 
particle resolution is fine enough to be able produce all 
these small scale phenomena and to capture sharp curved 
interfaces in the solution domain. Since the investigation of 
these small scale secondary instabilities is not the focus of 
our current presentation, in the rest of the paper, the particle 
resolution of 100×200 is used to simulate the RTI problem. 

 
Furthermore, we have shown in Fig. 2 that even with 

low particle resolution (60×120), the ISPH model employed 
in this work can produce a result which is in a good 
agreement with that of Level Set reported in [13, 23]. This 
can be attributed to the faster convergence rate of the SPH 
method than the Level set method. One should also notice 
from Fig. 2 that unlike the WCSPH approach [13], the ISPH 
method can capture the onset of the secondary instability 
without necessitating the usage of high particle resolution. It 
should also be noted that the current ISPH treatment of the 
RTI problem captures the strong roll-up in the core region 
of the instability, hence implying that the model does not 
suffer from the artificial surface tension effect [18]. 
 

 
Figure 1. Spatial convergence of Rayleigh-Taylor instability using three 
different particle resolution, namely, 60×120, 100×200 and 200×400 at 

0.5( / ) 5.0t g H =  
 

 
Figure 2. The comparison of ISPH solutions for Rayleigh-Taylor instability 

with WCSPH and LS reported in [13]. 
 
 
 

 
V. RESULTS 

 
To illustrate the influence of density ratio on the RTI, in 

Fig.3, we present the sequence of the evolution of the 
interface for the density ratios of  2 1/ 2ρ ρ = , 5 and 100, 
respectively at the Reynolds number of 300 and the Bond 
number of 100, where the left half of each subfigures shows 
the particle distribution, whereas the right half presents the 
pressure contours. 
 

There are three apparent stages in the development of 
the instability. The first stage corresponds to earlier times in 
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Figure 3. The sequence of the evolution of the interface from a single mode perturbation for density ratio of 
2 1
/ 2ρ ρ =  at the Reynolds number, 

of 300 and the Bond number of 100, where the left half of each subfigures shows the particle distribution, whereas the right half presents the 
pressure contours. 
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Figure 4. The sequence of the evolution of the interface from a single mode perturbation for density ratio of 
2 1

/ 5ρ ρ =  at the Reynolds number 
of 300 and the Bond number of 100, where the left half of each subfigures shows the particle distribution, whereas the right half presents the 

pressure contours. 
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Figure 5. The sequence of the evolution of the interface from a single mode perturbation for density ratio of 
2 1

/ 100ρ ρ =  at the Reynolds 
number of 300 and the Bond number of 100, where the left half of each subfigures shows the particle distribution, whereas the right half presents 

the pressure contours. 
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simulations where the initial disturbance grows 
exponentially, and the fluid layers retain their initial 
sinusoidal shape as can be seen from the first row of Figs.3 
through 5. At this stage, the shape of the RTI instability is 
the same for all density ratios albeit the differences in the 
growth rate. The growth rate increases with increasing 
density ratio. At the second stage, the leading spikes 
supported by a column of heavier fluids (so-called stem) 
develop and circular shapes on the crest of the spike appear 
(see the second row of Figs.3 through 5).  It should be 
observed that, for lower density ratios, the stem is wider and 
the circular tip of the stem has a larger radius.  
 

The last stage corresponds to the formation of the final 
shape of the instability before its impact on the stationary 
wall. At this stage, the stem elongates and gets thinner, and 
the lighter fluid is entrained into the circular drop at the 
trough of the spike. The instability has different patterns for 
different density ratios. For a lower density ratio, the crest 
of the spike acquires a mushroom cap shape. It is noted that 
the entrainment of the lighter fluid leads to thinner trough 
for the lower density ratios; however for the higher density 
ratios the stem has approximately uniform width during its 
elongation and the spike conserves its circular shape (see the 
last row of Figs.3 through 5). It is worthy of mentioning that 
for higher density ratios, namely2 1/ 10ρ ρ > , the dramatic 
differences in the shape of spike and bubble become less 
pronounced. Density ratio affects the growth rate of the 
instability. However, the transient and final shapes of the 
instability are rather independent of the density ratio. 
 

It should be further noted that as the density ratio 
increases, the pressure at the tip of the spike gets greater. 
This can be explained considering the potential energy of 
the fluid. The heavier the fluid, the higher its initial potential 
energy is. This potential energy is converted to the kinetic 
energy as the instability grows. In time, the fluid jet slows 
down as it approaches to the bottom stationary wall. Upon 
the impact on the wall, the spike feels higher pressure region 
at its crest due to the deceleration of fluid jet.    

VI.  CONCLUSION 

Under the assumption of 2D incompressible immiscible 
two-phase viscous flow, a parametric investigation of the 
Rayleigh-Taylor instability of a fluid layer resting on the 
second lighter fluid was performed. Having tested the 
spatial convergence, and validated the model with results 
available in the literature, we investigated the effect of 
density ratio on the RT instability. It was numerically 
illustrated that the density ratio has a significant effect on 
the evolution and the final shape of the instability.     
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