12 research outputs found

    Diffusion tensor tractograghy can affect treatment strategy to remove brain occupying mass lesions

    Get PDF
    Radical resection of a pathological lesion along with the preservation of eloquent cerebral tissue is the principle goal of neurosurgery. Brain lesions are usually diagnosed by conventional magnetic resonance imaging (MRI), but this method is unable to describe the relationship between lesions and neighboring specific white matter (WM) tracts. Diffusion tensor tractograghy (DTT) is a new sophisticated imaging modality to reveal the neural fibers and their relationships with lesions. In the current study we assess that how diffusion tensor tractograghy can affect on treatment planning in patients afflicted by different types of brain lesions. In this prospective observational study, eight patients with brain mass lesion underwent conventional brain MRI pulse sequences and DTT imaging with 1.5 Tesla system using 64 independent diffusion encoding directions between December 2011 to January 2013.Acquired images were assessed by the neuroradiologist and neurosurgeon. Finally, the treatment strategies were compared using data before and after the tractograghy. The treatment strategy in six patients changed from radiotherapy into the craniotomy by using tractograghy data, in one patient changed from radio surgery to craniotomy and in one patient, neurosurgeon preferred to avoid operation. As we can infer from this study, based on the tractograghy results, the treatment technique may be changed, and the treatment plan could be devised with more accuracy and in case of surgery, may lead to less post-operative neurological deficits and better outcome results

    T cell cytokine responses in peripheral blood mononuclear cells from patients with multidrug-resistant tuberculosis following stimulation with proteins purified from Mycobacterium tuberculosis MDR clinical isolates

    Get PDF
    AbstractObjectiveTuberculosis (TB) is a devastating disease that remains a major health threat worldwide. The appearance of Mycobacterium tuberculosis strains resistance to current antibiotics is a growing problem, both in the third world and in developed countries. Completion of genomic sequencing of M. tuberculosis provides a strong foundation for subsequent identification of proteins to aid the understanding of protein function and the discovery of new drug targets or a TB vaccine. This study employed a proteomics approach to identify proteins from antibiotic resistant M. tuberculosis isolates and compare them to drug-sensitive isolates to determine the role of T cells in multidrug-resistant (MDR)-TB patients against M. tuberculosis-purified proteins (Rv0147) as compared with healthy subjects.MethodsProteins were extracted by Triton X-114 detergent-phase separation and precipitated by adding saturated ammonium sulfate to the supernatant. Following isoelectric focusing, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Mass spectrometry was performed, and protein sequences were determined. Peripheral bloom mononuclear cells (PBMCs) were cultured, and autologous T cells were isolated from PBMCs by negative selection. Cells were subsequently cultured at 37°C in 5% CO2, followed by stimulation with 10μg/mL of the protein candidate (Rv0147) for 72h. Culture supernatants were assayed for interleukin (IL)-10 and interferon (IFN)-γ by enzyme-linked immunosorbent assay.ResultsThe identified proteins included Rv3057c, Rv0009, Rv3161c, Rv3614c, Rv0685, Rv2986c, Rv0443, Rv2114, Rv3311, Rv0831, Rv3804, and Rv3614c, and our results showed that the majority of upregulated or overexpressed proteins belonged to pathways associated with cellular metabolism, cell wall integrity, respiration, or cell membrane construction. Additionally, Rv1876 from MDR-TB isolates was predicted to be involved in the expression of bacterioferritin exclusively in MDR-TB-related resistance to first-line TB drugs. Furthermore, Rv2031c (HspX) was induced under oxygen-deficient conditions, and hypothetical protein (Rv2744c) and two membrane- and cell-wall-fraction proteins (Rv0379 and Rv1886c) were also identified. Analysis revealed increased percentages of INF-γ and decreased IL-10 levels in MDR-TB patients as compared with those observed in normal subjects.ConclusionFour identified membrane or membrane-associated proteins, including bacterioferritin, GroEs, HspX, and Ef-Tu, may be potential targets for the development of novel prophylactic diagnostics and therapeutic strategies against TB. Our results suggested that T cells stimulated by the protein candidate Rv0147 may be shifted to T helper 1 status in MDR-TB patients

    An Efficient Hybrid I/O Caching Architecture Using Heterogeneous SSDs

    No full text

    A Matrix-Inversion Technique for FPGA-Based Real-Time EMT Simulation of Power Converters

    No full text

    Proteome-scale MDR-TB-antibody responses for identification of putative biomarkers for the diagnosis of drug-resistant Mycobacterium tuberculosis

    Get PDF
    Objective: Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains that do not respond to isoniazid and rifampicin, the two most effective first-line anti-TB drugs. Here, we designed and produced antibodies based on biomarkers that exist only in MDR-TB. Methods: Bacilli were cultured for 4 weeks at 37°C, and protein extraction was performed by sequential extraction. Bacterial cells were sonicated, centrifuged at 5000rpm for 45min, and the supernatant was collected and subjected to multiple rounds of treatment to prior to protein isolation. Protein concentration was determined using the Bradford method, and extracted proteins (50 μg) from each strain (drug-sensitive- and MDR-TB isolates) were visualized on polyacrylamide gels (5–15%) with Coomassie Brilliant Blue R-250 staining. Three extracts were mixed and dialyzed against 0.1M ammonium bicarbonate (pH 8.0), followed by mass spectrometry. Specific polyclonal antibodies against purified MDR-TB proteins were purified by affinity chromatography and prepared in rabbits using three booster injections. The ELIZA test was performed for evaluation the antibody production. The antibody was treated with normal oral flora to remove any non specificity and cross reactivity. Analyses of different protein patterns (drug-sensitive- and MDR-TB) were performed by western blot. Results: Our revealed that the MDR-TB strains contained specific antigens, and that the protein profiles of drug-sensitive TB strains differed from those of the MDR-TB isolates. Five bands from the MDR-TB fractions were detected as diagnostic antigens and were not observed in drug-sensitive-TB fractions. Western blot results showed that the MDR-TB antigenic fractions showed immunogenic bands at 50.0 kDa and 70.0 kDa, with the five antigenic MDR-TB-specific bands were identified as Rv3248c, Rv0350, Rv0440, Rv0475, and Rv3588c. Conclusion: Western blot data revealed dynamic properties of antibody responses that led to actionable findings for further research. Moreover, specific anti-mycobacterial antibodies, such as MDR-TB antibodies, can be essential tools in the identification of species-restricted antigens, such as drug-resistant TB antigens. The MDR-TB antibodies described here might promote identification of mycobacterial antigens during the course of infection, which could be helpful for the development of newer TB-vaccine candidates or therapeutic agents for improved TB treatment or diagnosis

    Comparing mRNA expression and protein abundance in MDR Mycobacterium tuberculosis: Novel protein candidates, Rv0443, Rv0379 and Rv0147 as TB potential diagnostic or therapeutic targets

    No full text
    Tuberculosis (TB) is a sizable public health threat in the world. This study was conducted to determine the differential protein composition between susceptible and MDRTB strains. Tuberculosis proteins were extracted by Triton™ X-114 and ammonium sulfate. Two-dimensional gel electrophoresis protein spots were selected for identification by mass spectrometry and mRNA expression levels were measured by real- time PCR.2DE-Western blot and T cell epitope prediction for identified proteins were made by the IEDB server. The result shows at least six protein spots (Rv0147, Rv3597c, Rv0379, Rv3699, Rv1392 and Rv0443) were differentially expressed in MDRTB isolates. However, difference in mRNA gene expression was not found in the six mRNA genes.2DE-Western blot procedures indicated strong reaction against MDRTB proteins corresponds to 13, 16 and 55 kDa areas that might be used as new diagnostic tools. In conclusion, these MDRTB proteins identified in this study could be reliable TB diagnostic candidates or therapeutic targets
    corecore