1,170 research outputs found

    Exploring Stakeholder Priorities for Recent MLIS Graduates and Early Career Librarians

    Get PDF
    A multi-phase research project was conducted to understand the future skills and competencies expected of new MLIS-degreed librarians. Phase one found the two largest categories of challenges include understanding the mission of the library and funding issues, with other categories including staff skills, hiring and retaining staff, technology, operations and policies, and outreach. Phase two explored stakeholder priorities for competences expected of new MLIS graduates and librarians finishing their first five years of employment. The highest priorities for new MLIS graduates are related to skills and basic knowledge, while areas such as management and leadership, lifelong learning, and information resources were highly prioritized for early career librarians

    Toward automatic reconstruction of a highly resolved tree of life

    Get PDF
    Contains fulltext : 51078.pdf (publisher's version ) (Closed access)We have developed an automatable procedure for reconstructing the tree of life with branch lengths comparable across all three domains. The tree has its basis in a concatenation of 31 orthologs occurring in 191 species with sequenced genomes. It revealed interdomain discrepancies in taxonomic classification. Systematic detection and subsequent exclusion of products of horizontal gene transfer increased phylogenetic resolution, allowing us to confirm accepted relationships and resolve disputed and preliminary classifications. For example, we place the phylum Acidobacteria as a sister group of delta-Proteobacteria, support a Gram-positive origin of Bacteria, and suggest a thermophilic last universal common ancestor

    S100A1: A Multifaceted Therapeutic Target in Cardiovascular Disease

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide, showing a dramatically growing prevalence. It is still associated with a poor clinical prognosis, indicating insufficient long-term treatment success of currently available therapeutic strategies. Investigations of the pathomechanisms underlying cardiovascular disorders uncovered the Ca2+ binding protein S100A1 as a critical regulator of both cardiac performance and vascular biology. In cardiomyocytes, S100A1 was found to interact with both the sarcoplasmic reticulum ATPase (SERCA2a) and the ryanodine receptor 2 (RyR2), resulting in substantially improved Ca2+ handling and contractile performance. Additionally, S100A1 has been described to target the cardiac sarcomere and mitochondria, leading to reduced pre-contractile passive tension as well as enhanced oxidative energy generation. In endothelial cells, molecular analyses revealed a stimulatory effect of S100A1 on endothelial NO production by increasing endothelial nitric oxide synthase activity. Emphasizing the pathophysiological relevance of S100A1, myocardial infarction in S100A1 knockout mice resulted in accelerated transition towards heart failure and excessive mortality in comparison with wild-type controls. Mice lacking S100A1 furthermore displayed significantly elevated blood pressure values with abrogated responsiveness to bradykinin. On the other hand, numerous studies in small and large animal heart failure models showed that S100A1 overexpression results in reversed maladaptive myocardial remodeling, long-term rescue of contractile performance, and superior survival in response to myocardial infarction, indicating the potential of S100A1-based therapeutic interventions. In summary, elaborate basic and translational research established S100A1 as a multifaceted therapeutic target in cardiovascular disease, providing a promising novel therapeutic strategy to future cardiologists

    Introduction to Special Issue on “Disaggregating Civil War”

    Get PDF
    We introduce the contributions to this special issue on “Disaggregating Civil War.” We review the problems arising from excessive aggregation in studies of civil war, and outline how disaggregation promises to provide better insights into the causes and dynamics of civil wars, using the articles in this special issue as examples. We comment on the issue of the appropriate level of disaggregation, lessons learned from these articles, and issues for further research. </jats:p

    Introduction to topological superconductivity and Majorana fermions

    Full text link
    This short review article provides a pedagogical introduction to the rapidly growing research field of Majorana fermions in topological superconductors. We first discuss in some details the simplest "toy model" in which Majoranas appear, namely a one-dimensional tight-binding representation of a p-wave superconductor, introduced more than ten years ago by Kitaev. We then give a general introduction to the remarkable properties of Majorana fermions in condensed matter systems, such as their intrinsically non-local nature and exotic exchange statistics, and explain why these quasiparticles are suspected to be especially well suited for low-decoherence quantum information processing. We also discuss the experimentally promising (and perhaps already successfully realized) possibility of creating topological superconductors using semiconductors with strong spin-orbit coupling, proximity-coupled to standard s-wave superconductors and exposed to a magnetic field. The goal is to provide an introduction to the subject for experimentalists or theorists who are new to the field, focusing on the aspects which are most important for understanding the basic physics. The text should be accessible for readers with a basic understanding of quantum mechanics and second quantization, and does not require knowledge of quantum field theory or topological states of matter.Comment: 21 pages, 5 figure

    Medicinal Plants of the Australian Aboriginal Dharawal People Exhibiting Anti-Inflammatory Activity

    Get PDF
    Chronic inflammation contributes to multiple ageing-related musculoskeletal and neurodegenerative diseases, cardiovascular diseases, asthma, rheumatoid arthritis, and inflammatory bowel disease. More recently, chronic neuroinflammation has been attributed to Parkinson&apos;s and Alzheimer&apos;s disease and autism-spectrum and obsessive-compulsive disorders. To date, pharmacotherapy of inflammatory conditions is based mainly on nonsteroidal anti-inflammatory drugs which in contrast to cytokine-suppressive anti-inflammatory drugs do not influence the production of cytokines such as tumour necrosis factoror nitric oxide. However, their prolonged use can cause gastrointestinal toxicity and promote adverse events such as high blood pressure, congestive heart failure, and thrombosis. Hence, there is a critical need to develop novel and safer nonsteroidal anti-inflammatory drugs possessing alternate mechanism of action. In this study, plants used by the Dharawal Aboriginal people in Australia for the treatment of inflammatory conditions, for example, asthma, arthritis, rheumatism, fever, oedema, eye inflammation, and inflammation of bladder and related inflammatory diseases, were evaluated for their anti-inflammatory activity in vitro. Ethanolic extracts from 17 Eucalyptus spp. (Myrtaceae) were assessed for their capacity to inhibit nitric oxide and tumor necrosis factor-production in RAW 264.7 macrophages. Eucalyptus benthamii showed the most potent nitric oxide inhibitory effect (IC 50 5.57 ± 1.4 g/mL), whilst E. bosistoana, E. botryoides, E. saligna, E. smithii, E. umbra, and E. viminali
    corecore