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Abstract  

We have developed an automatable procedure for reconstructing the tree of life 

with branch lengths comparable across all three domains on the basis of a concatenation 

of 31 orthologs occurring in 191 species with sequenced genomes. The tree revealed 

inter-domain discrepancies in taxonomic classification. Systematic detection and 

subsequent exclusion of products of horizontal gene transfer increased phylogenetic 

resolution, allowing us to confirm accepted relationships and resolve disputed and 

preliminary classifications. For example, we place the previously defined Acidobacteria 

phylum as a sister group of δ-proteobacteria, support a gram-positive origin of Bacteria, 

and suggest a thermophilic last universal common ancestor. 



Reconstructing the phylogenetic relationships amongst all living organisms is one 

of the fundamental challenges in biology. Numerous attempts to derive a tree of life 

through various methods have been published (for a review see (1)), and its principal 

existence has been questioned recently (2, 3). Moreover, even under the assumption of a 

tree of life, numerous groupings and taxonomic entities still remain heavily debated and 

the advent of molecular and genomic data has increased the variety of classifications 

rather than reducing the problem (1). Theoretical and practical limits to the reconstruction 

of a tree of life have been put forward, such as the insufficient amount of discriminating 

characters available, even in information-rich genomic datasets (4), and the computing 

resources required to cope with large numbers of species (1). Furthermore, there are 

factors that hamper the accurate reconstruction of phylogenetic trees regardless of the 

methods used, such as the sampling bias of the species included (5) and the dilution of 

phylogenetic signal by horizontal gene transfer (HGT) (6), the extent of which is still 

extremely controversial (2, 3, 7). In addition to these difficulties, different datasets have 

been used with a variety of methods and parameter settings, making it almost impossible 

to quantitatively compare the proposed results. Hence, there exists the challenge and 

requirement for a reproducible and updatable pipeline to reconstruct the tree of life by 

means of a commonly available dataset such as completely sequenced genomes. Here, we 

demonstrate the feasibility of the tree construction and present a phylogeny based on an 

alignment of sufficient length and resolution to accurately calculate comparable branch 

lengths across all three domains of life. We have created for this purpose a supermatrix of 

31 concatenated, universally occurring genes with indisputable orthology in 191 species 

with completely annotated genomes (Fig. 1, Table S1). Although the initial identification 



and analysis of these genes required considerable manual effort (8), the inclusion of 

additional species with completely annotated genomes has pipeline character (Fig. 1). As 

the 31 universal genes are all involved in translation, we applied the same tree-building 

procedure to independent sets of domain-specific non-translational genes (8). 

For the tree reconstruction we mostly used standard approaches (Fig. 1), with the 

exception of a procedure for the detection and selective exclusion of HGTs, which turned 

out to be essential for obtaining a highly resolved tree. We started with 36 genes 

universally present in all 191 species for which orthologs could be unambiguously 

identified (8) and eliminated five of them from the analysis (mostly t-RNA synthetases) 

because they have undergone multiple horizontal transfers and/or were difficult to align 

(Fig.1, Table S1). Although the 31 remaining genes are unlikely to be subjected to lateral 

transfers as they mainly encode for ribosomal proteins (9), we systematically tested them 

for any HGT event not yet identified. We randomly allocated the 31 gene products into 4 

groups and for each group we derived the corresponding subsets of trees where each 

protein was in turn missing from the alignment (resampling with displacement). We 

subsequently checked for topological incongruence within each subset of trees and 

further tested candidate HGTs by two other independent measures (8). If at least one of 

these two measures could confirm the jack-knife indication, the gene was considered 

horizontally transferred and removed from the corresponding alignment. (Fig. 1, Table 

S2). 

Our approach (confirmed by single tree analysis (8)) detected a total of 7 HGT 

candidates (i.e. orthologous gene displacements (10)) among 31 orthologs from 191 

species, with some species being involved in more than one HGT event (Table S2). Three 



out of the four aminoacyl-tRNA synthetases (aa-RSs) used in this analysis have 

undergone HGT, including Valyl-RS (COG0525), which had been reported before (11) 

thus confirming the mobility of these enzymes (12). Clostridia is the only class that 

acquired ribosomal proteins by lateral transfer, likely in a single ancient event, as the 

displaced orthologs are present in all sequenced Clostridia (Table S2). To our knowledge, 

only one other horizontal transfer of ribosomal proteins has been reported so far (13). 

However, the discovery of seven HGTs in the 31 translation-related genes compares 

favourably with 30 (ten per domain) lateral transfers detected in domain-specific trees 

from 24 non-translational genes (8). 

The species-specific exclusion of HGTs and concatenation of all gene product 

alignments resulted in a supermatrix of 8090 positions for 191 species. This supermatrix 

was subsequently used to reconstruct the tree of life shown in Fig. 2 (for a detailed 

version, see http://www.bork.embl.de/tree_of_life/). 

The global tree topology was supported by two independent measurements: 

Firstly, using domain-specific subtrees from non-translational genes we could confirm 

the monophyly of all major divisions and reproduce most of their branching orders (8), 

albeit with weaker statistical support. This is due to lower sequence coverage and/or 

conservation as well as a higher number of excluded characters because of the higher 

incidence of HGTs (8). Secondly, three independent tests carried out on the individual 

gene trees revealed that although they are not identical, they share similarities with both 

the obtained tree of life and with each other (8). While it may be possible to reject the 

null hypothesis of each of these tests without much difficulty, their combined evidence 

suggests that the gene trees have a cohesive phylogenetic signal. 



Within the tree of life as many as 65% of the branches are supported by a 

bootstrap proportion (BP) of 100%, and 81.7% have more than 80% BP support, enabling 

us to propose resolutions to debated classifications at both the root and the tips of the tree 

(Table 1). Even though in Prokaryotes the statistical support of the early branches is 

generally weaker than that of the recent ones, it is noteworthy that within the Bacteria, 

the Firmicutes appear to comprise the earliest branching phylum, in agreement with a 

proposed gram-positive ancestor for all Bacteria (14) (Fig. 2, Table 1). In our tree the 

Firmicutes are placed at the earliest division of Eubacteria, with 66% BP support and 

33% of remaining BP show at least a subclade of Firmicutes at the earliest division. This 

placement and the fact that the 15 slowest-evolving taxa of the Bacteria are all gram-

positive (8) support the theory of a gram-positive origin of Bacteria. Furthermore, the 

thermophilic Firmicute Thermoanaerobacter tengcongensis is the taxon with the shortest 

overall phylogenetic distance to the root of Bacteria (Fig. 2), and as such is most likely to 

have retained ancestral states (15). Together with the fact that slowest-evolving, ancestral 

Archaea (Table S7) are also (hyper)thermophilic (8), this lends support to the hypothesis 

that the last universal common ancestor (LUCA) was living at high temperatures. 

At the base of the Proteobacteria, the monophyletic Acidobacteria appear as a 

sister-group to the δ-proteobacteria (Fig. 2). The 64% BP support for this relationship, 

indicates that the Acidobacteria may be a sixth divergent class within Proteobacteria. The 

monophyly of the Proteobacterial/Acidobacterial clade is supported with a BP of 98%, 

further raising the question whether Acidobacteria should indeed be an independent 

phylum (16). 



Towards the tips of the tree, within the Cyanobacteria, Synechococcus 

(sp.WH8102) groups with the Prochloroccales, and Nostoc groups with Synechocystis, a 

result that has been supported by some rRNA studies (17) and challenges the classical 

order Chroococcales (firstly defined in 1849 and based upon morphological features 

(18)). 

Within the Archaea, the position of Nanoarchaeota remains debated (see e.g. 

(19)). We find (with 100% BP support) that they are a sister group of Crenarchaeota, 

without an indication of reported HGTs from Crenarchaeota (19) in all the core genes 

studied. 

Within the Eukaryotes, our tree gives clear support for the classical Coelomata 

hypothesis that groups the Arthropods with Deuterostomia (chordates) in a monophyletic 

clade. This is in contrast to the “new animal phylogeny” that groups nematodes and 

arthropods into the monophyletic Ecdysozoa (20, 21). The Ecdysozoan clade has been 

supported by SSU-rRNA and single-gene phylogenies ((22) and references therein) but 

has been rejected by a number of recent studies based on genomics features and whole 

genome phylogenies ((23) and references therein). The current sampling bias and 

accelerated evolution of sequenced representatives of certain Metazoan lineages (e.g. 

arthropods and nematodes; see Fig. 2) may factor in these results. This highlights the 

need for the sequencing of slow evolving species (15), which may resolve such 

controversies in the tree. 

Despite a highly resolved and robust tree, we cannot exclude a few uncertainties 

in tree topology due to biased species sampling or long branch attraction (LBA) (24). For 

example, the close grouping of Thermotoga and Aquifex in our and other trees might be 



partially caused by their common thermophilic lifestyle (25), while LBA might account 

for the placement of parabasalia (G.lamblia) as the most basal eukaryal taxon (Table 1). 

The use of a common protein set across all three domains of life also ensures that 

the observed branch lengths are comparable across the entire tree. This enables, for 

example, an objective, quantitative analysis of the consistency of traditional taxonomic 

groupings (Fig. 3). As expected, the hierarchy of taxonomic groups correlates with the 

phylogenetic diversity measured between and within them (e.g. species belonging to the 

same family have a shorter branch length distance than species belonging only to the 

same phylum). Within each taxonomic level, the branch lengths distances vary 

considerably, apparently owing to factors that influence substitution rates such as 

differences in lifestyle or population size. However, even when taking this effect into 

account, we observe a strong discrepancy between taxonomic divisions in Eukaryotes and 

Prokaryotes (Fig. 3A). Organisms that have been assigned to separate phyla in 

Eukaryotes would clearly belong to the same phylum in the prokaryotic classification. 

Historically, Eukaryotes have obviously been given more taxonomic resolution than 

Prokaryotes – a testament to their greater morphological diversity. 

Another universal trend is that smaller genomes evolve faster (i.e. have longer 

branch lengths, Fig. 3B). This is easily explained for pathogenic or endosymbiontic 

organisms with reduced genomes, which often have only limited capabilities to remove 

mutations by means of recombination or DNA repair (26). However, we observe this 

trend also for genomes of larger sizes, including free-living Prokaryotes, and Eukaryotes. 

Intriguingly, there is not a single organism sequenced that is both fast evolving and has a 

large genome (Fig. 3B). This suggests that the coupled processes of genome reduction 



and evolutionary speedup may be irreversible: genomes apparently do not grow again 

after a prolonged phase of genome reduction. 

The pan-domain phylogeny that resulted from the procedure presented here will 

increase in resolution with more species being sequenced. This updatable reference 

phylogeny of completely sequenced species allows accurate comparisons of branch 

lengths across domains. The resulting tree of life will be an invaluable tool in many areas 

of biological research ranging from classical taxonomy, via studies on the rate of 

evolution, to environmental genomics where DNA fragments of unknown phylogenetic 

origin need to be assigned. 



Figure 1. Overview of the procedure. 

The white boxes represent the major steps in the process of building the pan-

domain phylogeny presented here. The steps in grey represent automatable parts of the 

procedure that need to be carried out for the inclusion of further species. For the 31 

COGs used in the analysis, we manually derived 1:1 orthologs by removing 

mitochondrial and chloroplast paralogs from the corresponding multiple alignments. We 

built domain-specific alignments using the corresponding proteins encoded by the 31 

orthologs and aligned the resulting profiles. With this procedure we maximized the 

number of positions of the global alignment and reduced the number of misaligned 

residues. For a detailed description of the methods see (8). COG = Cluster of 

Orthologous Groups; HGT = Horizontal Gene Transfer; MSA = Multiple Sequence 

Alignment. 



Figure 2. Global phylogeny of fully sequenced organisms. 

The phylogenetic tree is based on a cleaned and concatenated alignment of 31 

universal protein families, and covers 191 species whose genomes have been fully 

sequenced. A detailed version of this tree, including bootstrap support values and branch 

lengths, is available at http://www.bork.embl.de/tree_of_life/. Green section: Archaea, 

red: Eukaryotes, blue: Bacteria. Labels and color shadings indicate various frequently 

used subdivisions. The branch separating Eukaryotes and Archaea from Bacteria in this 

unrooted tree has been shortened for display purposes. 



Figure 3. Global analysis of branch length information. 

A) Average sequence divergence within taxonomic classification units. Each data 

point denotes a pairwise comparison of two taxa, relating their inter-taxa branch length 

distance (i.e. sequence divergence) with their level of relatedness according to the NCBI 

taxonomy (‘taxonomic distance’). Horizontal bars denote 95% intervals and medians of 

the data. Some minor taxonomy hierarchy levels have been omitted. Marked items: (a) 

Homo sapiens vs. Pan troglodytes. The sequence divergence between human and chimp 

is low; they most likely would have been assigned the same genus if they had been 

Prokaryotes (see also (27) for a proposed revision). (b) Synechococcus (sp. WH8102) vs. 

Prochlorococcus marinus 9313. The two species are annotated as distinct orders but they 

appear quite closely related, challenging the classical order of Chroococcales (see text). 

B) Evolutionary speed and genome size. For each taxon, the cumulative branch 

length from the tip to the root is plotted against the genome size (measured here as 

number of genes). 



 Table 1. Noteworthy Topological Features Of The Tree Of Life. 
 

 

Domain Topological  
Feature 

BP 
(%) 

Eukaryota 
Coelomata hypothesis 100 
Amoebozoa related to Opistokonta 41 
Deep branching of Parabasalia 100 

Eubacteria 

Relationships within phyla 
Separation between β and γ-proteobacteria 100 
Disruption of Chroococcales monophyly 100 
Disruption of Actinomycetales monophyly 100 
Acidobacteria/Proteobacteria clade 98 
Cluster of F.succinogenes next to the 
Chlorobium/Bacterioidales (Sphingobacteria hypothesis) 62 

Cluster of F.nucleatum with hyperthermophylic Bacteria 36 
Relationships between phyla 

Grouping of Chlamydiae, Spirochetes, Actinobacteria and 
Bacteriodales/Chlorobi 67 

Grouping of Cyanobacteria, hyperthermophylic and 
Deinococcales/Chloroflexi 51 

Relationships between super-phyla 
Grouping of Proteobacteria with Cyanobacteria, 
hyperthermophylic and Deinococcales/Chloroflexi 74 

Deep branching of Firmicutes 66 

Archaeabacteria 

Relationships within phyla 
A. fulgidus with halobacterium and methanosarcina 99 

Relationships between phyla 
Nanoarchaea as a sister branch of Crenarchaea 100 



Legend to Table 1: 

Selected features of the phylogeny that are novel, debated or difficult to reproduce 

according to current literature. An extended version of the table is available as Table S6. 

In the case of Firmicutes as the earliest branching bacterial phylum, it is noteworthing 

that the remaining 33% of the bootstrap proportion show at least a subclade of the 

Firmicutes at the earliest division. 
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