211 research outputs found

    Slices, slabs, and sections of the unit hypercube

    Get PDF
    Using combinatorial methods, we derive several formulas for the volume of convex bodies obtained by intersecting a unit hypercube with a halfspace, or with a hyperplane of codimension 1, or with a flat defined by two parallel hyperplanes. We also describe some of the history of these problems, dating to Polya's Ph.D. thesis, and we discuss several applications of these formulas.Comment: 11 pages; minor corrections to reference

    Finding largest small polygons with GloptiPoly

    Get PDF
    A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices nn. Many instances are already solved in the literature, namely for all odd nn, and for n=4,6n=4, 6 and 8. Thus, for even n10n\geq 10, instances of this problem remain open. Finding those largest small polygons can be formulated as nonconvex quadratic programming problems which can challenge state-of-the-art global optimization algorithms. We show that a recently developed technique for global polynomial optimization, based on a semidefinite programming approach to the generalized problem of moments and implemented in the public-domain Matlab package GloptiPoly, can successfully find largest small polygons for n=10n=10 and n=12n=12. Therefore this significantly improves existing results in the domain. When coupled with accurate convex conic solvers, GloptiPoly can provide numerical guarantees of global optimality, as well as rigorous guarantees relying on interval arithmetic
    corecore