83 research outputs found

    The DL EXCURV Package

    No full text
    Working Pape

    Chemical imaging of Fischer-Tropsch catalysts under operating conditions

    Get PDF
    Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas (“syngas”: CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, “multimodal” tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized

    Automatic processing of multimodal tomography datasets

    Get PDF
    With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source

    X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts

    Get PDF
    The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer–Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of ‘multimodal’ tomography, i.e. simultaneous XRF–CT, XANES–CT and XRD–CT. Subsequently, we show high-energy XRD–CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed

    Energy dispersive-EXAFS of Pd nucleation at a liquid/liquid interface

    Get PDF
    Energy dispersive extended X-ray absorption fine structure (EDE) has been applied to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K edge-step height determination shows that under supersaturated conditions the concentration of Pd near the interface fluctuate over a period of several hours, likely due to the continuous formation and dissolution of sub-critical nuclei. Open circuit potential measurements conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the fluctuations in Pd concentration are also visible as variations in potential across the liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common ion (tetraethylammonium, TEA+) the Pd nanoparticle growth rate could be slowed down, resulting in a smooth nucleation process. Eventually, when the TEA+ ions reached an equilibrium potential, Pd nucleation and particle growth were inhibited

    In-situ removal and characterisation of uranium-containing particles from sediments surrounding the Fukushima Daiichi Nuclear Power Plant

    Get PDF
    AbstractTraditional methods to locate and subsequently study radioactive fallout particles have focused heavily on autoradiography coupled with in-situ analytical techniques. Presented here is the application of a Variable Pressure Scanning Electron Microscope with both backscattered electron and energy dispersive spectroscopy detectors, along with a micromanipulator setup and electron-hardening adhesive to isolate and remove individual particles before synchrotron radiation analysis. This system allows for a greater range of new and existing analytical techniques, at increased detail and speed, to be applied to the material. Using this method, it was possible to erform detailed energy dispersive spectroscopy and synchrotron radiation characterisation of material likely ejected from the Fukushima Daiichi Nuclear Power Plant found within a sediment sample collected from the edge of the 30km exclusion zone. Particulate material sub-micron in maximum dimension examined during this work via energy dispersive spectroscopy was observed to contain uranium at levels between 19.68 and 28.35 weight percent, with the application of synchrotron radiation spectroscopy confirming its presence as a major constituent.With great effort and cost being devoted to the remediation of significant areas of eastern Japan affected by the incident, it is crucial to gain the greatest possible understanding of the nature of this contamination in order to inform the most appropriate clean-up response

    Unravelling the spatial dependency of the complex solid-state chemistry of Pb in a paint micro-sample from Rembrandt's Homer using XRD-CT

    Get PDF
    The surface of many Old Master paintings has been affected by the appearance of whitish lead-rich deposits, which are often difficult to fully characterise, thereby hindering conservation. A paint micro-sample from Rembrandt's Homer was imaged using X-ray Diffraction Computed Tomography (XRD-CT) in order to understand the evolving solid-state Pb chemistry from the painting surface and beneath. The surface crust was identified as a complex mixture of lead sulfates. From the S : Pb ratios throughout the paint layer, we can conclude that S is from an external source in the form of SO2, and that the nature of Pb-SO4 product is dependent on the degree of diffusion/absorption of SO2 into the paint layers

    Understanding the reactivity of CoCrMo-implant wear particles

    Get PDF
    CoCrMo-based metal-on-metal hip implants experienced unexpectedly high failure rates despite the high wear and corrosion resistance of the bulk material. Although they exhibit a lower volumetric wear compared to other implant materials, CoCrMo-based implants produced a significantly larger 'number' of smaller wear particles. CoCrMo is nominally an extremely stable material with high Cr content providing passivity. However, despite the Co:Cr ratio in the original alloy being 2:1; chemical analyses of wear particles from periprosthetic tissue have found the particles to be composed predominately of Cr species, with only trace amounts of Co remaining. Here a correlative spectroscopy and microscopy approach has shown that these particles dissolve via a non-stoichiometric, and geometrically inhomogeneous, mechanism similar to de-alloying. This mechanism is previously unreported for this material and was not apparent in any of the regulatory required tests, suggesting that such tests are insufficiently discriminating

    A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25°C

    Get PDF
    The Raman spectra of thioarsenite and arsenite species in aqueous solution were obtained at room temperature. Solutions at constant ΣAs + ΣS of 0.1 and 0.5 mol kg(-1 )were prepared with various ΣS/ΣAs ratios (0.1–9.0) and pH values (~7–13.2). Our data suggest that the speciation of As under the conditions investigated is more complicated than previously thought. The Raman measurements offer evidence for at least six separate S-bearing As species whose principal bands are centered near 365, 385, 390, 400, 415 and 420 cm(-1). The data suggest that at least two different species may give rise to bands at 385 cm(-1), bringing the probable minimum number of species to seven. Several additional species are possible but could not be resolved definitively. In general, the relative proportions of these species are dependent on total As concentration, ΣS/ΣAs ratio and pH. At very low ΣS/ΣAs ratios we also observe Raman bands attributable to the dissociation products of H(3)AsO(3)(aq). Although we were unable to assign precise stoichiometries for the various thioarsenite species, we were able to map out general pH and ΣS/ΣAs conditions under which the various thioarsenite and arsenite species are predominant. This study provides a basis for more detailed Raman spectroscopic and other types of investigations of the nature of thioarsenite species

    Calculation of the visible-UV absorption spectra of hydrogen sulfide, bisulfide, polysulfides, and As and Sb sulfides, in aqueous solution

    Get PDF
    Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)(3), As(SH)(2)S(- )and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides S(n)(2-), n = 2–6, the bisulfide anion, SH(-), hydrogen sulfide, H(2)S and the sulfanes, S(n)H(2), n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH(- )to H(2)S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S(8 )with SH(- )to produce the polysulfides, S(n)H(-), n = 2–6. Our results are in excellent agreement with available experimental data, and support the existence of a S(6 )species
    • 

    corecore