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Abstract. Energy dispersive extended X-ray absorption fine structure (EDE) has been applied 

to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial 

potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K 

edge-step height determination shows that under supersaturated conditions the concentration of 

Pd near the interface fluctuate over a period of several hours, likely due to the continuous 

formation and dissolution of sub-critical nuclei. Open circuit potential measurements 

conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the 

fluctuations in Pd concentration are also visible as variations in potential across the 

liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common 

ion (tetraethylammonium, TEA
+
) the Pd nanoparticle growth rate could be slowed down, 

resulting in a smooth nucleation process. Eventually, when the TEA
+
 ions reached an 

equilibrium potential, Pd nucleation and particle growth were inhibited. 

1. Introduction

Nucleation is currently the focus of considerable research activity in crystallisation science and crystal 

engineering and has been the subject of a number of reviews including [1, 2]. Particle formation from 

homogeneous solution involves nucleus (or nuclei) formation by self-association of solute molecules 

and subsequent phase-separation from the bulk solution. By following the solute and solution structure 

from the under-saturated through the supersaturated state to the regime of spontaneous particle 

formation, relationships to the structure of the crystallised final products may be established. However, 

there are considerable experimental challenges arising from the size of the nuclei (sub-nm range), their 

unknown composition, diffusive or convective movement, as well as the stochastic nature of 
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nucleation events and the possibility that nuclei may be short-lived transient species present in very 

low concentrations [3, 4]. Techniques previously used include coupled solid and liquid state NMR, 

liquid-cell TEM, analytical ultracentrifugation with UV-Visible spectroscopy, small angle X-ray 

scattering (SAXS) and X-ray absorption fine-structure (XAFS) [5-8]. We monitor nucleation at a 

liquid-liquid interface by XAFS (figure 1). The liquid-liquid interface was between an aqueous phase 

containing [PdCl4]
2–

 and an organic (ααα-trifluorotoluene, TFT) solution containing ferrocene 

(Fe(cp)2). [PdCl4]
2–

 is reduced by Fe(cp)2 at the liquid/liquid interface as per equation (1) [9], leading 

to the nucleation of Pd nanoparticles. 

[PdCl4]
2–

 (aq) + 2 Fe(cp)2 (org)  ⇌   Pd (interface) + 2 [Fe(cp)2]
+
 (org) + 4 Cl

–
 (aq) 

(1) 

Such an interface between two immiscible liquids provides an elegant avenue to confining 

homogeneous nanoparticle nucleation and growth to a defined spatial region [9, 10]. This enables 

targeted analysis by specialist techniques such as XAFS [11-13] while permitting control of the 

thermodynamic driving force for nucleation by varying the concentration ratio of the redox couple 

[14]. Nucleation at the liquid/liquid interface results in a high local concentration of particles, 

providing spectroscopic contrast to enable observation of transient species in the early stages of 

nucleation [15, 16]. 

The energy dispersive EXAFS (EDE) work described here used the same experimental system that 

we employed in [14] where we reported evidence for a randomly fluctuating equilibrium at the 

liquid/liquid interface by quick EXAFS (QEXAFS) spectroscopy. The use of EDE at SOLEIL’s ODE 

beamline allowed us to characterize the system with higher time resolution than in the previous 

QEXAFS study at B18/Diamond [14]. In this contribution we will focus on how inclusion of a 

common ion (tetraethylammonium, TEA
+
) in both phases fixes the interfacial potential and thereby 

achieves additional control over the growth process [17]. 

 

2.  Experimental 

Solutions were added to 2 mL Eppendorf safe-lock tubes (diameter 1 cm). The concentrations were 10 

mM [PdCl4]
–
and 100 mM LiCl in the aqueous phase, in conjunction with 20 mM ferrocene and 

10 mM [BTPPA][TFPB]  in the TFT (organic) phase. In the system where we included TEA
+
, the 

concentrations are 100 mM TEACl in the aqueous phase and 1 mM [TEA][TFPB] in the organic phase 

in addition to the reactants and background electrolytes mentioned above. XAFS data were obtained in 

transmission mode at the energy dispersive XAFS beamline, ODE at Synchrotron SOLEIL, Gif-sur-

Yvette, France [18]. To follow the variation in palladium density the Pd K edge heights were 

estimated by taking the differences in absorption at 24,331.2 and 24,375.3 eV. We note that the use of 

a Pd-coated mirror in the ODE beamline optics resulted in a complicated, non-linear transmission 

function of the spectrometer around the Pd K-edge, which led to a noticeable distortion of the 

absorption spectrum in the XANES region. However, as the samples were all collected at the ODE 

beamline the data remains internally consistent. Spectra were collected at different vertical z-distances 

Figure 1. The liquid-liquid system used for studying nucleation. The aqueous layer contains [PdCl4]
2–

 and the 

organic layer (trifluorotoluene) contains the reducing agent ferrocene. The build-up of metallic Pd 

nanoparticles is evident from the absorption coefficient profile along the vertical axis, through the aqueous, 

interfacial and organic phases. Reproduced from Ref. [14] with permission from the Royal Society of 

Chemistry. 
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to the interface. Lowest z-values (in mm) indicate measurements in the aqueous phase (above the 

interface), while highest values stem from the organic phase below. Further details on chemicals and 

EDE experiments are given in the Supporting Information. 

 

3.  Results and Discussion 

An example of a time series of EDE spectra 

measured at a fixed position at the interface (z = 

0.05 mm) under conditions of supersaturation, but 

below the onset of spontaneous nucleation is shown 

in figure 2a and S1. The edge heights varied 

significantly with time, indicating Pd concentration 

fluctuations across the width of the beam (300 μm), 

as expected for a stochastic nucleation equilibrium. 

A further example of the metastable state formation 

is shown in figure S2.  

The time series profiles were monitored at 

several other distances relative to the interface (z 

values of 0.00, 0.05, 0.10, 0.15 and 0.20 mm). Edge 

height profiles as a function of time are plotted in 

figure 2b. Near the bulk of the aqueous phase (z = 

0.00 mm), there is a brief induction period of ~40 

minutes followed by density fluctuations over a 

period of 5-7 h. Nearer the interface (z = 0.05 to 

0.15 mm) these fluctuations were also visible and 

became more pronounced closer to the interface. 

The organic phase is at z = 0.20 mm, just 0.05 mm 

below the region with the highest Pd concentration 

and strongest fluctuations. At z = 0.20 mm the edge 

height is near zero due to the absence of Pd. No 

transfer of Pd from the aqueous phase took place. 

Our previous observations by QEXAFS [14] 

indicated stochastic Pd reduction and oxidation 

taking place near the interface, and not simply 

adsorption and desorption of Pd nanoparticles. 

The density fluctuations observed in the XAFS 

data should be associated with potential variations 

at the liquid/liquid interface because [PdCl4]
2-

 or 

ferrocene may become locally depleted through the 

formation of Pd
0
 and a ferricinium oxidation 

product. To examine this we applied the use of a 

common ion (TEA
+
) in both liquid phases. As the 

TEA
+
 is able to transfer between the two phases, an 

equilibrium potential is formed across the 

liquid/liquid interface and fixes the interfacial 

potential. Starting with a large excess of TEA
+
 in 

the aqueous phase, TEA
+
 is then able to partition 

into the organic phase, resulting in a negative biasing of the aqueous phase relative to the organic 

phase, slowing the electron transfer from ferrocene to Pd. 

The EDE experiment under conditions of supersaturation was therefore repeated with inclusion of 

TEA
+
. By comparing the experiments with (figure 2c) and without TEA

+
 (figure 2b) it can be seen that 

the addition of TEA
+
 resulted in a slight increase in the induction time before the onset of nucleation, 

   

  

Figure 2. (a) EDE spectra collected at z = 0.05 mm 

in the sample without TEA
+
. (b) and (c) show the 

edge-step heights at different scan depths at the 

liquid/liquid interface for the sample (b) without 

added TEA
+
 and (c) with added TEA

+
.
 
Overlaid in 

(b) and (c) are the open circuit potentials. 

(b)  

(c)  

(a) 0.05 mm, without TEA 
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followed by smoother Pd nucleation as can be seen from the supressed fluctuations in edge-step 

heights. In order to confirm the potential dependence of the growth process, we also measured the 

open circuit potentials (OCP). Without added TEA
+
, the interfacial potential fluctuated with a similar 

frequency to the EDE-detected fluctuations (figure 2b). With TEA
+
 added a relatively large decrease 

in potential ~100 minutes after the phases were connected took place before the potential stabilised 

(figure 2c). OCP stabilisation fitted well with the point at which Pd growth slowed down significantly. 

Although the potential scales were different for the two samples it is evident that electron transfer was 

slowed down by negatively biasing the aqueous phase, in accordance with previous electrochemical 

studies [9, 10]. 

Conclusions 
EDE monitoring of Pd nanoparticle nucleation in a galvanic liquid/liquid cell revealed a regime of 

spatial instability compatible with the density fluctuations expected when growth and dissolution of 

sub-critical Pd nuclei take place in a supersaturated state. Control of the interfacial potential by 

inclusion of a common ion (TEA
+
) in both phases slowed down the nucleation process when the 

aqueous phase had a negative potential bias relative to the organic phase. Open circuit potential 

measurements in a liquid/liquid electrochemical cell are in line with the EDE data, indicating that 

density fluctuations are accompanied by chemical potential variations near the liquid/liquid interface. 
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