290 research outputs found

    DC field induced enhancement and inhibition of spontaneous emission in a cavity

    Get PDF
    We demonstrate how spontaneous emission in a cavity can be controlled by the application of a dc field. The method is specially suitable for Rydberg atoms. We present a simple argument for the control of emission.Comment: 3-pages, 2figure. accepted in Phys. Rev.

    Protein complex from human milk enhances the activity of antibiotics and drugs against Mycobacterium tuberculosis.

    Get PDF
    Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.Microbiology and Molecular Genetic

    Non-Markovian Dynamics of Entanglement for Multipartite Systems

    Full text link
    Entanglement dynamics for a couple of two-level atoms interacting with independent structured reservoirs is studied using a non-perturbative approach. It is shown that the revival of atom entanglement is not necessarily accompanied by the sudden death of reservoir entanglement, and vice versa. In fact, atom entanglement can revive before, simultaneously or even after the disentanglement of reservoirs. Using a novel method based on the population analysis for the excited atomic state, we present the quantitative criteria for the revival and death phenomena. For giving a more physically intuitive insight, the quasimode Hamiltonian method is applied. Our quantitative analysis is helpful for the practical engineering of entanglement.Comment: 10 pages and 4 figure

    Multi-Modal Properties and Dynamics of the Gradient Echo Quantum Memory

    Full text link
    We investigate the properties of a recently proposed Gradient Echo Memory (GEM) scheme for information mapping between optical and atomic systems. We show that GEM can be described by the dynamic formation of polaritons in k-space. This picture highlights the flexibility and robustness with regards to the external control of the storage process. Our results also show that, as GEM is a frequency-encoding memory, it can accurately preserve the shape of signals that have large time-bandwidth products, even at moderate optical depths. At higher optical depths, we show that GEM is a high fidelity multi-mode quantum memory.Comment: 4 pages 3 figure

    Scaling properties of cavity-enhanced atom cooling

    Full text link
    We extend an earlier semiclassical model to describe the dissipative motion of N atoms coupled to M modes inside a coherently driven high-finesse cavity. The description includes momentum diffusion via spontaneous emission and cavity decay. Simple analytical formulas for the steady-state temperature and the cooling time for a single atom are derived and show surprisingly good agreement with direct stochastic simulations of the semiclassical equations for N atoms with properly scaled parameters. A thorough comparison with standard free-space Doppler cooling is performed and yields a lower temperature and a cooling time enhancement by a factor of M times the square of the ratio of the atom-field coupling constant to the cavity decay rate. Finally it is shown that laser cooling with negligible spontaneous emission should indeed be possible, especially for relatively light particles in a strongly coupled field configuration.Comment: 7 pages, 5 figure

    Vacuum-stimulated cooling of single atoms in three dimensions

    Full text link
    Taming quantum dynamical processes is the key to novel applications of quantum physics, e.g. in quantum information science. The control of light-matter interactions at the single-atom and single-photon level can be achieved in cavity quantum electrodynamics, in particular in the regime of strong coupling where atom and cavity form a single entity. In the optical domain, this requires permanent trapping and cooling of an atom in a micro-cavity. We have now realized three-dimensional cavity cooling and trapping for an orthogonal arrangement of cooling laser, trap laser and cavity vacuum. This leads to average single-atom trapping times exceeding 15 seconds, unprecedented for a strongly coupled atom under permanent observation.Comment: 4 pages, 4 figure

    Trapping and cooling single atoms with far-off resonance intracavity doughnut modes

    Get PDF
    We investigate cooling and trapping of single atoms inside an optical cavity using a quasi-resonant field and a far-off resonant mode of the Laguerre-Gauss type. The far-off resonant doughnut mode provides an efficient trapping in the case when it shifts the atomic internal ground and excited state in the same way, which is particularly useful for quantum information applications of cavity quantum electrodynamics (QED) systems. Long trapping times can be achieved, as shown by full 3-D simulations of the quasi-classical motion inside the resonator.Comment: 18 pages, 18 figures, RevTe

    Trapping of Single Atoms with Single Photons in Cavity QED

    Get PDF
    Two recent experiments have reported the trapping of individual atoms inside optical resonators by the mechanical forces associated with single photons [Hood et al., Science 287, 1447 (2000) and Pinkse et al., Nature 404, 365 (2000)]. Here we analyze the trapping dynamics in these settings, focusing on two points of interest. Firstly, we investigate the extent to which light-induced forces in these experiments are distinct from their free-space counterparts. Secondly, we explore the quantitative features of the resulting atomic motion and how these dynamics are mapped onto variations of the intracavity field. Not surprisingly, qualitatively distinct atomic dynamics arise as the coupling and dissipative rates are varied. For the experiment of Hood et al., we show that atomic motion is largely conservative and is predominantly in radial orbits transverse to the cavity axis. A comparison with the free-space theory demonstrates that the fluctuations of the dipole force are suppressed by an order of magnitude. This effect is based upon the Jaynes-Cummings eigenstates of the atom-cavity system and represents qualitatively new physics for optical forces at the single-photon level. By contrast, even in a regime of strong coupling in the experiment of Pinkse et al., there are only small quantitative distinctions between the free-space theory and the quantum theory, so it is not clear that description of this experiment as a novel single-quantum trapping effect is necessary. The atomic motion is strongly diffusive, leading to an average localization time comparable to the time for an atom to transit freely through the cavity and to a reduction in the ability to infer aspects of the atomic motion from the intracavity photon number.Comment: 19 pages, 22 figure files, REVTEX, corrected spelling, LaTeX now produces postscript which includes figures, minor changes to figures. Final version to be published in Physical Review A, expanded summary of results in introduction, minor changes to figures and tex

    Jacobi Identity for Vertex Algebras in Higher Dimensions

    Full text link
    Vertex algebras in higher dimensions provide an algebraic framework for investigating axiomatic quantum field theory with global conformal invariance. We develop further the theory of such vertex algebras by introducing formal calculus techniques and investigating the notion of polylocal fields. We derive a Jacobi identity which together with the vacuum axiom can be taken as an equivalent definition of vertex algebra.Comment: 35 pages, references adde
    • …
    corecore