3,622 research outputs found

    Inhibitory Synapse Formation at the Axon Initial Segment

    Get PDF
    The axon initial segment (AIS) is the site of action potential (AP) initiation in most neurons and is thus a critical site in the regulation of neuronal excitability. Normal function within the discrete AIS compartment requires intricate molecular machinery to ensure the proper concentration and organization of voltage-gated and ligand-gated ion channels; in humans, dysfunction at the AIS due to channel mutations is commonly associated with epileptic disorders. In this review, we will examine the molecular mechanisms underlying the formation of the only synapses found at the AIS: synapses containing γ-aminobutyric type A receptors (GABAARs). GABAARs are heteropentamers assembled from 19 possible subunits and are the primary mediators of fast synaptic inhibition in the brain. Although the total GABAAR population is incredibly heterogeneous, only one specific GABAAR subtype—the α2-containing receptor—is enriched at the AIS. These AIS synapses are innervated by GABAergic chandelier cells, and this inhibitory signaling is thought to contribute to the tight control of AP firing. Here, we will summarize the progress made in understanding the regulation of GABAAR synapse formation, concentrating on post-translational modifications of subunits and on interactions with intracellular proteins. We will then discuss subtype-specific synapse formation, with a focus on synapses found at the AIS, and how these synapses influence neuronal excitation

    A functional role for small-conductance calcium-activated potassium channels in sensory pathways including nociceptive processes

    Get PDF
    We investigated the role of small-conductance calcium-activated potassium (SK) and intermediate-conductance calcium-activated potassium channels in modulating sensory transmission from peripheral afferents into the rat spinal cord. Subunit-specific antibodies reveal high levels of SK3 immunoreactivity in laminas I, II, and III of the spinal cord. Among dorsal root ganglion neurons, both peripherin-positive (C-type) and peripherin-negative (A-type) cells show intense SK3 immunoreactivity. Furthermore, dorsal root-stimulated sensory responses recorded in vitro are inhibited when SK channel activity is increased with 1-ethyl-2-benzimidazolinone (1-EBIO). In vivo electrophysiological recordings show that neuronal responses to naturally evoked nociceptive and nonnociceptive stimuli increase after application of the selective SK channel blocker 8,14-diaza-1,7( 1,4)-diquinolinacyclotetradecaphanedium ditrifluoroacetate (UCL 1848), indicating that SK channels are normally active in moderating afferent input. Conversely, neuronal responses evoked by mechanical stimuli are inhibited when SK channel activity is increased with 1-EBIO. These effects are reversed by the subsequent application of UCL 1848. Our data demonstrate that SK channels have an important role in controlling sensory input into the spinal cord

    Improvements in 25 Years of Implantable Cardioverter Defibrillator Therapy

    Get PDF
    In 1980, Dr. Michel Mirowski and his team inserted the first implantable cardioverter defibrillator (ICD) in a patient. Initially, ICD therapy was not widely accepted, and many physicians actually considered this therapy unethical. Large secondary and primary prevention trials, demonstrating a beneficial effect of ICD therapy in selected patients not only on arrhythmic death but also on all-cause mortality, stimulated a rapid growth in the number of implants and increased patient’s and physician’s acceptance. Improvements in size and weight, arrhythmia discrimination capabilities, battery technology, shock waveform and output, monitoring capabilities and defibrillator electrode technology eventually resulted in the current large number of yearly implants. Today, almost 40 years after the conception of the ICD and 25 years after the first human implant, ICD therapy is the treatment of choice for patients at risk for life-threatening arrhythmias either as secondary or primary prevention. Furthermore, with the more recent addition of resynchronisation therapy to standard ICD therapy, it became possible to treat selected patients with advanced symptoms of heart failure and to lower the risk of sudden death

    Non-invasive imaging of high-risk coronary plaque: the role of computed tomography and positron emission tomography

    Get PDF
    Despite recent advances, cardiovascular disease remains the leading cause of death globally. As such, there is a need to optimise our current diagnostic and risk stratification pathways in order to better deliver individualised preventative therapies. Non-invasive imaging of coronary artery plaque can interrogate multiple aspects of coronary atherosclerotic disease, including plaque morphology, anatomy and flow. More recently, disease activity is being assessed to provide mechanistic insights into in vivo atherosclerosis biology. Molecular imaging using positron emission tomography is unique in this field, with the potential to identify specific biological processes using either bespoke or re-purposed radiotracers. This review provides an overview of non-invasive vulnerable plaque detection and molecular imaging of coronary atherosclerosis

    Bunch length measurements using a transverse deflecting cavity on VELA

    Get PDF
    The VELA facility at Daresbury Laboratory in the UK includes a 5 MeV/c 2.5 cell S-band photoinjector gun. This gun operates in the "blow-out" regime with a sub-200 fs length drive laser: the resulting bunch length is determined by space-charge effects. We present measurements made with an S-band transverse deflecting cavity to characterise the bunch length as a function of charge, and as a function of the gun operating phase

    Electron Accumulation Induces Efficiency Bottleneck for Hydrogen Production in Carbon Nitride Photocatalysts.

    Get PDF
    This study addresses the light intensity dependence of charge accumulation in a photocatalyst suspension, and its impact on both charge recombination kinetics and steady-state H2 evolution efficiency. Cyanamide surface functionalized melon-type carbon nitride (NCNCNx) has been selected as an example of emerging carbon nitrides photocatalysts because of its excellent charge storage ability. Transient spectroscopic studies (from ps to s) show that the bimolecular recombination of photogenerated electrons and holes in NCNCNx can be well described by a random walk model. Remarkably, the addition of hole scavengers such as 4-methylbenzyl alcohol can lead to ∼400-fold faster recombination kinetics (lifetime shortening to ∼10 ps). We show that this acceleration is not the direct result of ultrafast hole extraction by the scavenger, but is rather caused by long-lived electron accumulation in NCNCNx after hole extraction. The dispersive pseudo-first order recombination kinetics become controlled by the density of accumulated electrons. H2 production and steady-state spectroscopic measurements indicate that the accelerated recombination caused by electron accumulation limits the H2 generation efficiency. The addition of a reversible electron acceptor and mediator, methyl viologen (MV2+), accelerates the extraction of electrons from the NCNCNx and increases the H2 production efficiency under one sun irradiation by more than 30%. These results demonstrate quantitatively that while long-lived electrons are essential to drive photoinduced H2 generation in many photocatalysts, excessive electron accumulation may result in accelerated recombination losses and lower performance, and thus highlight the importance of efficient electron and hole extraction in enabling efficient water splitting photocatalysts.ERC AdG Intersolar grant (Grant No. 291482), The Christian Doppler Research Association The OMV Grou
    • …
    corecore