745 research outputs found

    Graviton emission from a higher-dimensional black hole

    Full text link
    We discuss the graviton absorption probability (greybody factor) and the cross-section of a higher-dimensional Schwarzschild black hole (BH). We are motivated by the suggestion that a great many BHs may be produced at the LHC and bearing this fact in mind, for simplicity, we shall investigate the intermediate energy regime for a static Schwarzschild BH. That is, for (2M)1/(n−1)ω∼1(2M)^{1/(n-1)}\omega\sim 1, where MM is the mass of the black hole and ω\omega is the energy of the emitted gravitons in (2+n)(2+n)-dimensions. To find easily tractable solutions we work in the limit l≫1l \gg 1, where ll is the angular momentum quantum number of the graviton.Comment: 10 pages, 8 figures, references added, typos corrected. Graviton degeneracy factor included; main results remain unchange

    Non-Gaussianity from false vacuum inflation: Old curvaton scenario

    Full text link
    We calculate the three-point correlation function of the comoving curvature perturbation generated during an inflationary epoch driven by false vacuum energy. We get a novel false vacuum shape bispectrum, which peaks in the equilateral limit. Using this result, we propose a scenario which we call "old curvaton". The shape of the resulting bispectrum lies between the local and the false vacuum shapes. In addition we have a large running of the spectral index.Comment: 13 pages, 3 figures; v2 with minor revison; v3 final version to appear on JCA

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Casimir effect between anti-de Sitter braneworlds

    Full text link
    We calculate the one-loop effective action of a scalar field with general mass and coupling to the curvature in the detuned Randall-Sundrum brane world scenario, where the four-dimensional branes are anti-de Sitter. We make use of conformal transformations to map the problem to one on the direct product of the hyperbolic space H^4 and the interval. We also include the cocycle function for this transformation. This Casimir potential is shown to give a sizable correction to the classical radion potential for small values of brane separation.Comment: 14 pages, 3 figures, revtex. Typos corrected and references added. Minor mistakes in Eq. 48 and Eq. A10 correcte

    Boundary dynamics and multiple reflection expansion for Robin boundary conditions

    Get PDF
    In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a function S of the boundary fields: (\nabla_N +S)\phi =0. Information on quantum boundary dynamics is then encoded in the SS-dependent part of the effective action. In the present paper we extend the multiple reflection expansion method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective action (i) for constant S, (ii) to the order S^2 with an arbitrary number of tangential derivatives. Some applications to symmetry breaking effects, tachyon condensation and brane world are briefly discussed.Comment: latex, 22 pages, no figure

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh

    Non-Abelian Einstein-Born-Infeld Black Holes

    Get PDF
    We construct regular and black hole solutions in SU(2) Einstein-Born-Infeld theory. These solutions have many features in common with the corresponding SU(2) Einstein-Yang-Mills solutions. In particular, sequences of neutral non-abelian solutions tend to magnetically charged limiting solutions, related to embedded abelian solutions. Thermodynamic properties of the black hole solutions are addressed.Comment: LaTeX, 14 pages, 6 postscript figures; typos corrected in reference

    Quantum self-consistency of AdS×ΣAdS \times \Sigma brane models

    Full text link
    Continuing on our previous work, we consider a class of higher dimensional brane models with the topology of AdSD1+1×ΣAdS_{D_1+1} \times \Sigma, where Σ\Sigma is a one-parameter compact manifold and two branes of codimension 1 are located at the orbifold fixed points. We consider a set-up where such a solution arises from Einstein-Yang-Mills theory and evaluate the one-loop effective potential induced by gauge fields and by a generic bulk scalar field. We show that this type of brane models resolves the gauge hierarchy between the Planck and electroweak scales through redshift effects due to the warp factor a=e−πkra=e^{-\pi kr}. The value of aa is then fixed by minimizing the effective potential. We find that, as in the Randall Sundrum case, the gauge field contribution to the effective potential stabilises the hierarchy without fine-tuning as long as the laplacian ΔΣ\Delta_\Sigma on Σ\Sigma has a zero eigenvalue. Scalar fields can stabilise the hierarchy depending on the mass and the non-minimal coupling. We also address the quantum self-consistency of the solution, showing that the classical brane solution is not spoiled by quantum effects.Comment: 10 page

    Casimir densities for a spherical brane in Rindler-like spacetimes

    Full text link
    Wightman function, the vacuum expectation values of the field square and the energy-momentum tensor are evaluated for a scalar field obeying mixed boundary condition on a spherical brane in (D+1)-dimensional Rindler-like spacetime Ri×SD−1Ri\times S^{D-1}, where RiRi is a two-dimensional Rindler spacetime. This spacetime approximates the near horizon geometry of (D+1) -dimensional black hole in the large mass limit. The vacuum expectation values are presented as the sum of boundary-free and brane-induced parts. Further we extract from the Wightman function for the boundary-free geometry the corresponding function in the bulk R2×SD−1R^{2}\times S^{D-1}. For the latter geometry the vacuum expectation values of the field square and the energy-momentum tensor do not depend on the spacetime point. For the renormalization of these quantities we use zeta regularization technique. Various limiting cases of the brane-induced vacuum expectation values are investigated.Comment: 15 pages, Application to the AdS black hole braneworld and references added, accepted for publication in Nuclear Physics

    Resonant structure of space-time of early universe

    Full text link
    A new fully quantum method describing penetration of packet from internal well outside with its tunneling through the barrier of arbitrary shape used in problems of quantum cosmology, is presented. The method allows to determine amplitudes of wave function, penetrability TbarT_{\rm bar} and reflection RbarR_{\rm bar} relatively the barrier (accuracy of the method: ∣Tbar+Rbar−1∣<1⋅10−15|T_{\rm bar}+R_{\rm bar}-1| < 1 \cdot 10^{-15}), coefficient of penetration (i.e. probability of the packet to penetrate from the internal well outside with its tunneling), coefficient of oscillations (describing oscillating behavior of the packet inside the internal well). Using the method, evolution of universe in the closed Friedmann--Robertson--Walker model with quantization in presence of positive cosmological constant, radiation and component of generalize Chaplygin gas is studied. It is established (for the first time): (1) oscillating dependence of the penetrability on localization of start of the packet; (2) presence of resonant values of energy of radiation EradE_{\rm rad}, at which the coefficient of penetration increases strongly. From analysis of these results it follows: (1) necessity to introduce initial condition into both non-stationary, and stationary quantum models; (2) presence of some definite values for the scale factor aa, where start of expansion of universe is the most probable; (3) during expansion of universe in the initial stage its radius is changed not continuously, but passes consequently through definite discrete values and tends to continuous spectrum in latter time.Comment: 18 pages, 14 figures, 4 table
    • …
    corecore