6 research outputs found

    Coding and Noncoding Transcriptomes of NODULIN HOMEOBOX (NDX)-Deficient Arabidopsis Inflorescence

    Get PDF
    Arabidopsis NODULIN HOMEOBOX (NDX) is a plant-specific transcriptional regulator whose role in small RNA biogenesis and heterochromatin homeostasis has recently been described. Here we extend our previous transcriptomic analysis to the flowering stage of development. We performed mRNA-seq and small RNA-seq measurements on inflorescence samples of wild-type and ndx1-4 mutant (WiscDsLox344A04) Arabidopsis plants. We identified specific groups of differentially expressed genes and noncoding heterochromatic siRNA (hetsiRNA) loci/regions whose transcriptional activity was significantly changed in the absence of NDX. In addition, data obtained from inflorescence were compared with seedling transcriptomics data, which revealed development-specific changes in gene expression profiles. Overall, we provide a comprehensive data source on the coding and noncoding transcriptomes of NDX-deficient Arabidopsis flowers to serve as a basis for further research on NDX function

    NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis

    Get PDF
    Arabidopsis NODULIN HOMEOBOX (NDX) is a nuclear protein described as a regulator of specific euchromatic genes within transcriptionally active chro- mosome arms. Here we show that NDX is primarily a heterochromatin reg- ulator that functions in pericentromeric regions to control siRNA production and non-CG methylation. Most NDX binding sites coincide with pericen- tromeric het-siRNA loci that mediate transposon silencing, and are antag- onistic with R-loop structures that are prevalent in euchromatic chromosomal arms. Inactivation of NDX leads to differential siRNA accumulation and DNA methylation, of which CHH/CHG hypomethylation colocalizes with NDX binding sites. Hi-C analysis shows significant chromatin structural changes in the ndx mutant, with decreased intrachromosomal interactions at pericen- tromeres where NDX is enriched in wild-type plants, and increased inter- chromosomal contacts between KNOT-forming regions, similar to those observed in DNA methylation mutants. We conclude that NDX is a key reg- ulator of heterochromatin that is functionally coupled to het-siRNA loci and non-CG DNA methylation pathways

    Coding and noncoding transcriptomes of NODULIN HOMEOBOX (NDX)-deficient Arabidopsis inflorescence

    Get PDF
    Abstract Arabidopsis NODULIN HOMEOBOX (NDX) is a plant-specific transcriptional regulator whose role in small RNA biogenesis and heterochromatin homeostasis has recently been described. Here we extend our previous transcriptomic analysis to the flowering stage of development. We performed mRNA-seq and small RNA-seq measurements on inflorescence samples of wild-type and ndx1-4 mutant (WiscDsLox344A04) Arabidopsis plants. We identified specific groups of differentially expressed genes and noncoding heterochromatic siRNA (hetsiRNA) loci/regions whose transcriptional activity was significantly changed in the absence of NDX. In addition, data obtained from inflorescence were compared with seedling transcriptomics data, which revealed development-specific changes in gene expression profiles. Overall, we provide a comprehensive data source on the coding and noncoding transcriptomes of NDX-deficient Arabidopsis flowers to serve as a basis for further research on NDX function

    Growth regulator requirement for in vitro embryogenic cultures of snowdrop (Galanthus nivalis L.) suitable for germplasm preservation

    No full text
    In this study, we report on the production of bulb scale-derived tissue cultures capable of efficient shoot and plant regeneration in three genotypes of snowdrop (Galanthus nivalis L., Amaryllidaceae), a protected ornamental plant. For culture line A, high auxin and low cytokinin concentration is required for callus production and plant regeneration. The type of auxin is of key importance: α-naphthaleneacetic acid (NAA) in combination with indole-3-acetic acid (IAA) at concentrations of 2 mg L−1 or 2–10 mg L−1 NAA with 1 mg L−1 N6-benzyladenine (BA), a cytokinin on full-strength media are required for regeneration. Cultures showing regeneration were embryogenic. When lines B and C were induced and maintained with 2 mg L−1 NAA and 1 mg L−1 BA, they produced mature bulblets with shoots, without roots. Line A produced immature bulblets with shoots under the above culture condition. Amplified Fragment Length Polymorphism (AFLP) analysis showed that (i) genetic differences between line A and its bulb explants were not significant, therefore these tissue cultures are suitable for germplasm preservation, and (ii) different morphogenetic responses of lines A, B and C originated from genetic differences. Culture line A is suitable for field-growing, cultivation and germplasm preservation of G. nivalis and for the production of Amaryllidaceae alkaloids
    corecore