112 research outputs found

    Protein C anticoagulant system—anti-inflammatory effects

    Get PDF
    Activated protein C (APC) plays active roles in preventing progression of a number of disease processes. These include thrombosis due to its direct anticoagulant activity which is likely augmented by its cytoprotective activity, thereby limiting exposure of procoagulant cellular membrane surfaces on cells. Beyond that, the pathway signals the cells to prevent apoptosis, to dampen inflammation, to increase endothelial barrier function, and to selectively downregulate some genes implicated in disease progression. Most of these functions are manifested to APC binding to endothelial protein C receptor (EPCR) allowing PAR1 activation, but activation of other PARS is also implicated in some cases. In addition to EPCR orchestrating these changes, CD11b is also capable of supporting APC signaling. Selective control of these pathways offers potential in new therapeutic approaches to disease

    A phase I study evaluating the pharmacokinetics, safety and tolerability of an antibody-based tissue factor antagonist in subjects with acute lung injury or acute respiratory distress syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tissue factor (TF)-dependent extrinsic pathway has been suggested to be a central mechanism by which the coagulation cascade is locally activated in the lungs of patients with acute lung injury and acute respiratory distress syndrome (ALI/ARDS) and thus represents an attractive target for therapeutic intervention. This study was designed to determine the pharmacokinetic and safety profiles of ALT-836, an anti-TF antibody, in patients with ALI/ARDS.</p> <p>Methods</p> <p>This was a prospective, randomized, placebo-controlled, dose-escalation Phase I clinical trial in adult patients who had suspected or proven infection, were receiving mechanical ventilation and had ALI/ARDS (PaO<sub>2</sub>/FiO<sub>2 </sub>≤ 300 mm). Eighteen patients (6 per cohort) were randomized in a 5:1 ratio to receive ALT-836 or placebo, and were treated within 48 hours after meeting screening criteria. Cohorts of patients were administered a single intravenously dose of 0.06, 0.08 or 0.1 mg/kg ALT-836 or placebo. Blood samples were taken for pharmacokinetic and immunogenicity measurements. Safety was assessed by adverse events, vital signs, ECGs, laboratory, coagulation and pulmonary function parameters.</p> <p>Results</p> <p>Pharmacokinetic analysis showed a dose dependent exposure to ALT-836 across the infusion range of 0.06 to 0.1 mg/kg. No anti-ALT-836 antibody response was observed in the study population during the trial. No major bleeding episodes were reported in the ALT-836 treated patients. The most frequent adverse events were anemia, observed in both placebo and ALT-836 treated patients, and ALT-836 dose dependent, self-resolved hematuria, which suggested 0.08 mg/kg as an acceptable dose level of ALT-836 in this patient population.</p> <p>Conclusions</p> <p>Overall, this study showed that ALT-836 could be safely administered to patients with sepsis-induced ALI/ARDS.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01438853">NCT01438853</a></p

    Solulin reduces infarct volume and regulates gene-expression in transient middle cerebral artery occlusion in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thrombolysis after acute ischemic stroke has only proven to be beneficial in a subset of patients. The soluble recombinant analogue of human thrombomodulin, Solulin, was studied in an <it>in vivo </it>rat model of acute ischemic stroke.</p> <p>Methods</p> <p>Male SD rats were subjected to 2 hrs of transient middle cerebral artery occlusion (tMCAO). Rats treated with Solulin intravenously shortly before reperfusion were compared to rats receiving normal saline i.v. with respect to infarct volumes, neurological deficits and mortality. Gene expression of IL-6, IL-1β, TNF-α, MMP-9, CD11B and GFAP were semiquantitatively analyzed by rtPCR of the penumbra.</p> <p>Results</p> <p>24 hrs after reperfusion, rats were neurologically tested, euthanized and infarct volumes determined. Solulin significantly reduced mean total (p = 0.001), cortical (p = 0.002), and basal ganglia (p = 0.036) infarct volumes. Hippocampal infarct volumes (p = 0.191) were not significantly affected. Solulin significantly downregulated the expression of IL-1β (79%; p < 0.001), TNF-α (59%; p = 0.001), IL-6 (47%; p = 0.04), and CD11B (49%; p = 0.001) in the infarcted cortex compared to controls.</p> <p>Conclusions</p> <p>Solulin reduced mean total, cortical and basal ganglia infarct volumes and regulated a subset of cytokines and proteases after tMCAO suggesting the potency of this compound for therapeutic interventions.</p

    Genetic Background Analysis of Protein C Deficiency Demonstrates a Recurrent Mutation Associated with Venous Thrombosis in Chinese Population

    Get PDF
    Background: Protein C (PC) is one of the most important physiological inhibitors of coagulation proteases. Hereditary PC deficiency causes a predisposition to venous thrombosis (VT). The genetic characteristics of PC deficiency in the Chinese population remain unknown. Methods: Thirty-four unrelated probands diagnosed with hereditary PC deficiency were investigated. PC activity and antigen levels were measured. Mutation analysis was performed by sequencing the PROC gene. In silico analyses, including PolyPhen-2, SIFT, multiple sequence alignment, splicing prediction, and protein molecular modeling were performed to predict the consequences of each variant identified. One recurrent mutation and its relative risk for thrombosis in relatives were analyzed in 11 families. The recurrent mutation was subsequently detected in a case (VT patients)-control study, and the adjusted odds ratio (OR) for VT risk was calculated by logistic regression analysis. Results: A total of 18 different mutations, including 12 novel variants, were identified. One common mutation, PROC c.565C.T (rs146922325:C.T), was found in 17 of the 34 probands. The family study showed that first-degree relatives bearing this variant had an 8.8-fold (95%CI = 1.1–71.6) increased risk of venous thrombosis. The case-control (1003 vs. 1031) study identified this mutation in 5.88 % patients and in 0.87 % controls, respectively. The mutant allele conferred a high predisposition to venous thrombosis (adjusted OR = 7.34, 95%CI = 3.61–14.94). The plasma PC activity and antigen levels i
    corecore