2,356 research outputs found

    Issues and Observations on Applications of the Constrained-Path Monte Carlo Method to Many-Fermion Systems

    Full text link
    We report several important observations that underscore the distinctions between the constrained-path Monte Carlo method and the continuum and lattice versions of the fixed-node method. The main distinctions stem from the differences in the state space in which the random walk occurs and in the manner in which the random walkers are constrained. One consequence is that in the constrained-path method the so-called mixed estimator for the energy is not an upper bound to the exact energy, as previously claimed. Several ways of producing an energy upper bound are given, and relevant methodological aspects are illustrated with simple examples.Comment: 28 pages, REVTEX, 5 ps figure

    Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate

    Full text link
    An exact theory for the density of a one-dimensional Bose-Einstein condensate with hard core particle interactions is developed in second quantization and applied to the scattering of the condensate by a spatially periodic impulse potential. The boson problem is mapped onto a system of free fermions obeying the Pauli exclusion principle to facilitate the calculation. The density exhibits a spatial focusing of the probability density as well as a periodic self-imaging in time, or Talbot effect. Furthermore, the transition from single particle to many body effects can be measured by observing the decay of the modulated condensate density pattern in time. The connection of these results to classical and atom optical phase gratings is made explicit

    Quantum Monte Carlo calculation of Compton profiles of solid lithium

    Full text link
    Recent high resolution Compton scattering experiments in lithium have shown significant discrepancies with conventional band theoretical results. We present a pseudopotential quantum Monte Carlo study of electron-electron and electron-ion correlation effects on the momentum distribution of lithium. We compute the correlation correction to the valence Compton profiles obtained within Kohn-Sham density functional theory in the local density approximation and determine that electronic correlation does not account for the discrepancy with the experimental results. Our calculations lead do different conclusions than recent GW studies and indicate that other effects (thermal disorder, core-valence separation etc.) must be invoked to explain the discrepancy with experiments.Comment: submitted to Phys. Rev.

    Diffraction of complex molecules by structures made of light

    Get PDF
    We demonstrate that structures made of light can be used to coherently control the motion of complex molecules. In particular, we show diffraction of the fullerenes C60 and C70 at a thin grating based on a standing light wave. We prove experimentally that the principles of this effect, well known from atom optics, can be successfully extended to massive and large molecules which are internally in a thermodynamic mixed state and which do not exhibit narrow optical resonances. Our results will be important for the observation of quantum interference with even larger and more complex objects.Comment: 4 pages, 3 figure

    Coherently Controlled Nanoscale Molecular Deposition

    Full text link
    Quantum interference effects are shown to provide a means of controlling and enhancing the focusing a collimated neutral molecular beam onto a surface. The nature of the aperiodic pattern formed can be altered by varying laser field characteristics and the system geometry.Comment: 13 pages (inculding 4 figures), LaTeX (Phys. Rev. Lett., 2000, in Press

    A Constrained Path Monte Carlo Method for Fermion Ground States

    Full text link
    We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state properties of various systems of interacting fermions. In this method, the ground state is projected from an initial wave function by a branching random walk in an over-complete basis of Slater determinants. By constraining the determinants according to a trial wave function ψT|\psi_T\rangle, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if ψT|\psi_T\rangle is exact. We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard model. We show results for lattice sizes up to 16×1616\times 16 and for various electron fillings and interaction strengths. Besides highly accurate estimates of the ground-state energy, we find that the method also yields reliable estimates of other ground-state observables, such as superconducting pairing correlation functions. We conclude by discussing possible extensions of the algorithm.Comment: 29 pages, RevTex, 3 figures included; submitted to Phys. Rev.

    Nivolumab combined with brentuximab vedotin for R/R primary mediastinal large B-cell lymphoma: a 3-year follow-up.

    Get PDF
    Patients with relapsed/refractory primary mediastinal large B-cell lymphoma (R/R PMBL) have poor responses to salvage therapy. Nivolumab and brentuximab vedotin (BV) showed promising early efficacy in patients with R/R PMBL in the phase 1/2 open-label, multicenter CheckMate 436 study; we report safety and efficacy findings from the 3-year follow-up. Patients who were eligible were aged ≥15 years with R/R PMBL previously treated with either high-dose chemotherapy plus autologous hematopoietic cell transplantation (HCT) or ≥2 prior multiagent chemotherapies, and had Eastern Cooperative Oncology Group performance status scores of 0 to 1 and CD30 expression of ≥1%. Patients were treated with nivolumab 240 mg and BV 1.8 mg/kg once every 3 weeks until disease progression or unacceptable toxicity. Primary end point was objective response rate (ORR); secondary end points included complete response rate, duration of response, progression-free survival (PFS), and overall survival (OS). Safety was monitored throughout. At final database lock (30 March 2022), 29 patients had received nivolumab plus BV; median follow-up was 39.6 months. Investigator-assessed ORR was 73.3%; median time to response was 1.3 months (range, 1.1-4.8). Median PFS was 26.0 months; median OS was not reached. PFS and OS rates at 24 months were 55.5% (95% confidence interval [CI], 32.0-73.8) and 75.5% (95% CI, 55.4-87.5), respectively. The most frequently occurring grade 3/4 treatment-related adverse event was neutropenia. Consolidative HCT was received by 12 patients, with a 100-day complete response rate of 100.0%. This 3-year follow-up showed long-term efficacy for nivolumab plus BV in R/R PMBL, with no new safety signals. This trial was registered at www.clinicaltrials.gov as #NCT02581631

    Noncovalent Interactions by QMC: Speedup by One-Particle Basis-Set Size Reduction

    Full text link
    While it is empirically accepted that the fixed-node diffusion Monte-Carlo (FN-DMC) depends only weakly on the size of the one-particle basis sets used to expand its guiding functions, limits of this observation are not settled yet. Our recent work indicates that under the FN error cancellation conditions, augmented triple zeta basis sets are sufficient to achieve a benchmark level of 0.1 kcal/mol in a number of small noncovalent complexes. Here we report on a possibility of truncation of the one-particle basis sets used in FN-DMC guiding functions that has no visible effect on the accuracy of the production FN-DMC energy differences. The proposed scheme leads to no significant increase in the local energy variance, indicating that the total CPU cost of large-scale benchmark noncovalent interaction energy FN-DMC calculations may be reduced.Comment: ACS book chapter, accepte

    Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals

    Get PDF
    We report diffusion quantum Monte Carlo calculations of three-dimensional Wigner crystals in the density range r_s=100-150. We have tested different types of orbital for use in the approximate wave functions but none improve upon the simple Gaussian form. The Gaussian exponents are optimized by directly minimizing the diffusion quantum Monte Carlo energy. We have carefully investigated and sought to minimize the potential biases in our Monte Carlo results. We conclude that the uniform electron gas undergoes a transition from a ferromagnetic fluid to a body-centered-cubic Wigner crystal at r_s=106+/-1. The diffusion quantum Monte Carlo results are compared with those from Hartree-Fock and Hartree theory in order to understand the role played by exchange and correlation in Wigner crystals. We also study "floating" Wigner crystals and give results for their pair-correlation functions

    Lithium atom interferometer using laser diffraction : description and experiments

    Full text link
    We have built and operated an atom interferometer of the Mach-Zehnder type. The atomic wave is a supersonic beam of lithium seeded in argon and the mirrors and beam-splitters for the atomic wave are based on elastic Bragg diffraction on laser standing waves at 671 nm. We give here a detailed description of our experimental setup and of the procedures used to align its components. We then present experimental signals, exhibiting atomic interference effects with a very high visibility, up to 84.5 %. We describe a series of experiments testing the sensitivity of the fringe visibility to the main alignment defects and to the magnetic field gradient.Comment: 8 avril 200
    corecore