1,929 research outputs found
Should We Use the IMPACT-Model for the Outcome Prognostication of TBI Patients? A Qualitative Study Assessing Physicians\u27 Perceptions
Introduction. Shared Decision-Making may facilitate information exchange, deliberation, and effective decision-making, but no decision aids currently exist for difficult decisions in neurocritical care patients. The International Patient Decision Aid Standards, a framework for the creation of high-quality decision aids (DA), recommends the presentation of numeric outcome and risk estimates. Efforts are underway to create a goals-of-care DA in critically-ill traumatic brain injury (ciTBI) patients. To inform its content, we examined physicians\u27 perceptions, and use of the IMPACT-model, the most widely validated ciTBI outcome model, and explored physicians\u27 preferences for communicating prognostic information towards families. Methods. We conducted a qualitative study using semi-structured interviews in 20 attending physicians (neurosurgery,neurocritical care,trauma,palliative care) at 7 U.S. academic medical centers. We used performed qualitative content analysis of transcribed interviews to identify major themes. Results. Only 12 physicians (60%) expressed awareness of the IMPACT-model; two stated that they barely knew the model. Seven physicians indicated using the model at least some of the time in clinical practice, although none used it exclusively to derive a patient\u27s prognosis. Four major themes emerged: the IMPACT-model is intended for research but should not be applied to individual patients; mistrust in the IMPACT-model derivation data; the IMPACT-model is helpful in reducing prognostic variability among physicians; concern that statistical models may mislead families about a patient\u27s prognosis. Discussion: Our study identified significant variability of the awareness, perception, and use of the IMPACT-model among physicians. While many physicians prefer to avoid conveying numeric prognostic estimates with families using the IMPACT-model, several physicians thought that they ground them and reduce prognostic variability among physicians. These findings may factor into the creation and implementation of future ciTBI-related DAs
Noncovalent Interactions by QMC: Speedup by One-Particle Basis-Set Size Reduction
While it is empirically accepted that the fixed-node diffusion Monte-Carlo
(FN-DMC) depends only weakly on the size of the one-particle basis sets used to
expand its guiding functions, limits of this observation are not settled yet.
Our recent work indicates that under the FN error cancellation conditions,
augmented triple zeta basis sets are sufficient to achieve a benchmark level of
0.1 kcal/mol in a number of small noncovalent complexes. Here we report on a
possibility of truncation of the one-particle basis sets used in FN-DMC guiding
functions that has no visible effect on the accuracy of the production FN-DMC
energy differences. The proposed scheme leads to no significant increase in the
local energy variance, indicating that the total CPU cost of large-scale
benchmark noncovalent interaction energy FN-DMC calculations may be reduced.Comment: ACS book chapter, accepte
Diffraction of complex molecules by structures made of light
We demonstrate that structures made of light can be used to coherently
control the motion of complex molecules. In particular, we show diffraction of
the fullerenes C60 and C70 at a thin grating based on a standing light wave. We
prove experimentally that the principles of this effect, well known from atom
optics, can be successfully extended to massive and large molecules which are
internally in a thermodynamic mixed state and which do not exhibit narrow
optical resonances. Our results will be important for the observation of
quantum interference with even larger and more complex objects.Comment: 4 pages, 3 figure
Quantum Monte Carlo calculation of Compton profiles of solid lithium
Recent high resolution Compton scattering experiments in lithium have shown
significant discrepancies with conventional band theoretical results. We
present a pseudopotential quantum Monte Carlo study of electron-electron and
electron-ion correlation effects on the momentum distribution of lithium. We
compute the correlation correction to the valence Compton profiles obtained
within Kohn-Sham density functional theory in the local density approximation
and determine that electronic correlation does not account for the discrepancy
with the experimental results. Our calculations lead do different conclusions
than recent GW studies and indicate that other effects (thermal disorder,
core-valence separation etc.) must be invoked to explain the discrepancy with
experiments.Comment: submitted to Phys. Rev.
Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations
A benchmark ab initio and density functional (DFT) study has been carried out
on the electron affinities of the first- and second-row atoms. The ab initio
study involves basis sets of and quality, extrapolations to
the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and
full CI electron correlation methods. Scalar relativistic and spin-orbit
coupling effects were taken into account. On average, the best ab initio
results agree to better than 0.001 eV with the most recent experimental
results. Correcting for imperfections in the CCSD(T) method improves the mean
absolute error by an order of magnitude, while for accurate results on the
second-row atoms inclusion of relativistic corrections is essential. The latter
are significantly overestimated at the SCF level; for accurate spin-orbit
splitting constants of second-row atoms inclusion of (2s,2p) correlation is
essential. In the DFT calculations it is found that results for the 1st-row
atoms are very sensitive to the exchange functional, while those for second-row
atoms are rather more sensitive to the correlation functional. While the LYP
correlation functional works best for first-row atoms, its PW91 counterpart
appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid)
functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991
correlation) puts in the best overall performance. The best results overall are
obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange
functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with
mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row
atoms. Indications exist that a hybrid of the type mPW1LYP +
mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning
DFT and electron affinities added
A Constrained Path Monte Carlo Method for Fermion Ground States
We describe and discuss a recently proposed quantum Monte Carlo algorithm to
compute the ground-state properties of various systems of interacting fermions.
In this method, the ground state is projected from an initial wave function by
a branching random walk in an over-complete basis of Slater determinants. By
constraining the determinants according to a trial wave function
, we remove the exponential decay of signal-to-noise ratio
characteristic of the sign problem. The method is variational and is exact if
is exact. We illustrate the method by describing in detail its
implementation for the two-dimensional one-band Hubbard model. We show results
for lattice sizes up to and for various electron fillings and
interaction strengths. Besides highly accurate estimates of the ground-state
energy, we find that the method also yields reliable estimates of other
ground-state observables, such as superconducting pairing correlation
functions. We conclude by discussing possible extensions of the algorithm.Comment: 29 pages, RevTex, 3 figures included; submitted to Phys. Rev.
Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate
An exact theory for the density of a one-dimensional Bose-Einstein condensate
with hard core particle interactions is developed in second quantization and
applied to the scattering of the condensate by a spatially periodic impulse
potential. The boson problem is mapped onto a system of free fermions obeying
the Pauli exclusion principle to facilitate the calculation. The density
exhibits a spatial focusing of the probability density as well as a periodic
self-imaging in time, or Talbot effect. Furthermore, the transition from single
particle to many body effects can be measured by observing the decay of the
modulated condensate density pattern in time. The connection of these results
to classical and atom optical phase gratings is made explicit
Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals
We report diffusion quantum Monte Carlo calculations of three-dimensional
Wigner crystals in the density range r_s=100-150. We have tested different
types of orbital for use in the approximate wave functions but none improve
upon the simple Gaussian form. The Gaussian exponents are optimized by directly
minimizing the diffusion quantum Monte Carlo energy. We have carefully
investigated and sought to minimize the potential biases in our Monte Carlo
results. We conclude that the uniform electron gas undergoes a transition from
a ferromagnetic fluid to a body-centered-cubic Wigner crystal at r_s=106+/-1.
The diffusion quantum Monte Carlo results are compared with those from
Hartree-Fock and Hartree theory in order to understand the role played by
exchange and correlation in Wigner crystals. We also study "floating" Wigner
crystals and give results for their pair-correlation functions
The CT20 peptide causes detachment and death of metastatic breast cancer cells by promoting mitochondrial aggregation and cytoskeletal disruption
Metastasis accounts for most deaths from breast cancer, driving the need for new therapeutics that can impede disease progression. Rationally designed peptides that take advantage of cancer-specific differences in cellular physiology are an emerging technology that offer promise as a treatment for metastatic breast cancer. We developed CT20p, a hydrophobic peptide based on the C terminus of Bax that exhibits similarities with antimicrobial peptides, and previously reported that CT20p has unique cytotoxic actions independent of full-length Bax. In this study, we identified the intracellular actions of CT20p which precede cancer cell-specific detachment and death. Previously, we found that CT20p migrated in the heavy membrane fractions of cancer cell lysates. Here, using MDA-MB-231 breast cancer cells, we demonstrated that CT20p localizes to the mitochondria, leading to fusion-like aggregation and mitochondrial membrane hyperpolarization. As a result, the distribution and movement of mitochondria in CT20p-treated MDA-MB-231 cells was markedly impaired, particularly in cell protrusions. In contrast, CT20p did not associate with the mitochondria of normal breast epithelial MCF-10A cells, causing little change in the mitochondrial membrane potential, morphology or localization. In MDA-MB-231 cells, CT20p triggered cell detachment that was preceded by decreased levels of alpha 5 beta 1 integrins and reduced F-actin polymerization. Using folate-targeted nanoparticles to encapsulate and deliver CT20p to murine tumors, we achieved significant tumor regression within days of peptide treatment. These results suggest that CT20p has application in the treatment of metastatic disease as a cancer-specific therapeutic peptide that perturbs mitochondrial morphology and movement ultimately culminating in disruption of the actin cytoskeleton, cell detachment, and loss of cell viability
Recommended from our members
On the role of goal relevance in emotional attention: Disgust evokes early attention to cleanliness
Prior evidence has shown that aversive emotional states are characterised by an attentional bias
towards aversive events. The present study investigated whether aversive emotions also bias attention
towards stimuli that represent means by which the emotion can be alleviated. We induced disgust by
having participants touch fake disgusting objects. Participants in the control condition touched nondisgusting
objects. The results of a subsequent dot-probe task revealed that attention was oriented to
disgusting pictures irrespective of condition. However, participants in the disgust condition also
oriented towards pictures representing cleanliness. These findings suggest that the deployment of
attention in aversive emotional states is not purely stimulus driven but is also guided by the goal to
alleviate this emotional state
- …