2,578 research outputs found
Passive States for Essential Observers
The aim of this note is to present a unified approach to the results given in
\cite{bb99} and \cite{bs04} which also covers examples of models not presented
in these two papers (e.g. -dimensional Minkowski space-time for ).
Assuming that a state is passive for an observer travelling along certain
(essential) worldlines, we show that this state is invariant under the isometry
group, is a KMS-state for the observer at a temperature uniquely determined by
the structure constants of the Lie algebra involved and fulfills (a variant of)
the Reeh-Schlieder property. Also the modular objects associated to such a
state and the observable algebra of an observer are computed and a version of
weak locality is examined.Comment: 27 page
Biomedical research leaders: report on needs, opportunities, difficulties, education and training, and evaluation.
The National Association of Physicians for the Environment (NAPE) has assumed a leadership role in protecting environmental health in recent years. The Committee of Biomedical Research Leaders was convened at the recent NAPE Leadership Conference: Biomedical Research and the Environment held on 1--2 November 1999, at the National Institutes of Health, Bethesda, Maryland. This report summarizes the discussion of the committee and its recommendations. The charge to the committee was to raise and address issues that will promote and sustain environmental health, safety, and energy efficiency within the biomedical community. Leaders from every important research sector (industry laboratories, academic health centers and institutes, hospitals and care facilities, Federal laboratories, and community-based research facilities) were gathered in this committee to discuss issues relevant to promoting environmental health. The conference and this report focus on the themes of environmental stewardship, sustainable development and "best greening practices." Environmental stewardship, an emerging theme within and outside the biomedical community, symbolizes the effort to provide an integrated, synthesized, and concerted effort to protect the health of the environment in both the present and the future. The primary goal established by the committee is to promote environmentally responsible leadership in the biomedical research community. Key outcomes of the committee's discussion and deliberation were a) the need for a central organization to evaluate, promote, and oversee efforts in environmental stewardship; and b) immediate need to facilitate efficient information transfer relevant to protecting the global environment through a database/clearinghouse. Means to fulfill these needs are discussed in this report
Recommended from our members
Model institutional infrastructures for recycling of photovoltaic modules
How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments
Recommended from our members
Essential tremor associated with pathologic changes in the cerebellum
Background: Although essential tremor (ET) is one of the most common neurologic disorders, there have been few postmortem studies. We recently reported postmortem changes (torpedoes and Bergmann gliosis) in the cerebellar cortex in a few ET cases. Objective: To describe more extensive postmortem changes in the cerebellum in another ET case. Design: Case report. Results: A 90-year-old woman had a 30-year history of ET. At postmortem examination, there was segmental loss of Purkinje cells, presence of torpedoes, and Bergmann gliosis in the cerebellar cortex. Moreover, there were extensive changes in the dentate nucleus, in the form of neuronal loss, neuronal atrophy, microglial clusters, and reduction in the number of efferent fibers (ie, pallor of the hilum). Conclusions: The brain in the current case exhibited more marked cerebellar pathologic features than noted in previously reported ET cases and thereby extends the described cerebellar findings in this common, yet pathologically poorly characterized, neurologic disorder
Diffraction of complex molecules by structures made of light
We demonstrate that structures made of light can be used to coherently
control the motion of complex molecules. In particular, we show diffraction of
the fullerenes C60 and C70 at a thin grating based on a standing light wave. We
prove experimentally that the principles of this effect, well known from atom
optics, can be successfully extended to massive and large molecules which are
internally in a thermodynamic mixed state and which do not exhibit narrow
optical resonances. Our results will be important for the observation of
quantum interference with even larger and more complex objects.Comment: 4 pages, 3 figure
Developing and validating an experience sampling measure of aggression:The Aggression-ES Scale
Experience sampling methodologies are likely to play an important role in advancing our understanding of momentary influences on aggression, including short-term antecedent psychological states and situations. In this study, we evaluate whether a newly developed experiencing sampling measure of aggression, the Aggression Experience Sampler (Aggression-ES), provides a valid and reliable measure of aggression in experience sampling contexts. Participants were a convenience sample of 23 young adults recruited from the local University community. Data were collected using an experience sampling smartphone application over 8 days. They were analyzed using multilevel structural equation modeling. Our results support the within- and between-person reliability and the criterion validity of the Aggression-ES. The Aggression-ES represents a good choice of measure for use in experience sampling studies of aggression. Further work in other samples will help to provide further validity evidence for the measure
Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine‐mapped region
Drosophila sechellia is a species of fruit fly endemic to the Seychelles islands. Unlike its generalist sister species, D. sechellia has evolved to be a specialist on the host plant Morinda citrifolia. This specialization is interesting because the plant’s fruit contains secondary defence compounds, primarily octanoic acid (OA), that are lethal to most other Drosophilids. Although ecological and behavioural adaptations to this toxic fruit are known, the genetic basis for evolutionary changes in OA resistance is not. Prior work showed that a genomic region on chromosome 3R containing 18 genes has the greatest contribution to differences in OA resistance between D. sechellia and D. simulans. To determine which gene(s) in this region might be involved in the evolutionary change in OA resistance, we knocked down expression of each gene in this region in D. melanogaster with RNA interference (RNAi) (i) ubiquitously throughout development, (ii) during only the adult stage and (iii) within specific tissues. We identified three neighbouring genes in the Osiris family, Osiris 6 (Osi6), Osi7 and Osi8, that led to decreased OA resistance when ubiquitously knocked down. Tissue‐specific RNAi, however, showed that decreasing expression of Osi6 and Osi7 specifically in the fat body and/or salivary glands increased OA resistance. Gene expression analyses of Osi6 and Osi7 revealed that while standing levels of expression are higher in D. sechellia, Osi6 expression is significantly downregulated in salivary glands in response to OA exposure, suggesting that evolved tissue‐specific environmental plasticity of Osi6 expression may be responsible for OA resistance in D. sechellia.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136293/1/mec14001_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136293/2/mec14001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136293/3/mec14001-sup-0001-SupInfo.pd
A Constrained Path Monte Carlo Method for Fermion Ground States
We describe and discuss a recently proposed quantum Monte Carlo algorithm to
compute the ground-state properties of various systems of interacting fermions.
In this method, the ground state is projected from an initial wave function by
a branching random walk in an over-complete basis of Slater determinants. By
constraining the determinants according to a trial wave function
, we remove the exponential decay of signal-to-noise ratio
characteristic of the sign problem. The method is variational and is exact if
is exact. We illustrate the method by describing in detail its
implementation for the two-dimensional one-band Hubbard model. We show results
for lattice sizes up to and for various electron fillings and
interaction strengths. Besides highly accurate estimates of the ground-state
energy, we find that the method also yields reliable estimates of other
ground-state observables, such as superconducting pairing correlation
functions. We conclude by discussing possible extensions of the algorithm.Comment: 29 pages, RevTex, 3 figures included; submitted to Phys. Rev.
Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate
An exact theory for the density of a one-dimensional Bose-Einstein condensate
with hard core particle interactions is developed in second quantization and
applied to the scattering of the condensate by a spatially periodic impulse
potential. The boson problem is mapped onto a system of free fermions obeying
the Pauli exclusion principle to facilitate the calculation. The density
exhibits a spatial focusing of the probability density as well as a periodic
self-imaging in time, or Talbot effect. Furthermore, the transition from single
particle to many body effects can be measured by observing the decay of the
modulated condensate density pattern in time. The connection of these results
to classical and atom optical phase gratings is made explicit
- …