1,401 research outputs found

    Theory of the Injun 5 VLF Poynting flux measurements

    Get PDF
    VLF Poynting flux measurement technique used on Injun 5 satellit

    VLF electric and magnetic fields observed in the auroral zone with the Javelin 8.46 sounding rocket

    Get PDF
    VLF electric and magnetic fields observed in auroral zone with Javelin 8.46 sounding rocke

    Elevated CO\u3csub\u3e2\u3c/sub\u3e Enhances Productivity and the C/N Ratio of Grasses in the Colorado Shortgrass Steppe

    Get PDF
    Atmospheric CO2 concentrations have been increasing since the industrial revolution, and are projected to double within this century over today\u27s concentration of 360 µmol mol-1 . This study used six open-top chambers in the Colorado, USA shortgrass steppe to investigate how increasing CO2 will affect productivity and C and N status of indigenous perennial grasses and forbs. From March until October, chambers were placed on two plots in each of the three blocks. In each block, one chamber was assigned an ambient CO2 treatment (~360 µmol mol-1), the other an elevated CO2 treatment (~720 µmol mol-1). Each block also had an unchambered control plot. Growth under elevated CO2 increased above-ground phytomass an average 31% in 1997 and 47% in 1998, with no differences in relative growth responses of C3 and C4 grasses and forbs. Growth in chambers was greater than non-chambered control plots, presumably due to warmer temperatures in chambers and a longer growing season. Shoot N concentrations were reduced 21% and C/N ratios increased 23% in elevated compared to ambient chambers. Variation in aboveground phytomass due to year, CO2 and chamber effects correlated well to % shoot N and C/N ratios, although for both traits different regression lines were required for green plant material (harvested in July) and senescent plant material (harvested in October). Results suggest increased growth and reduced N concentrations in this mixed C3/C4 grassland in an elevated CO2 environment

    Initial observations of VLF electric and magnetic fields with the Injun 5 satellite

    Get PDF
    Very low frequency electric and magnetic field observations by Injun 5 satellit

    Fludarabine as a cost-effective adjuvant to enhance engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    Get PDF
    There is still an unmet need for xenotransplantation models that efficiently recapitulate normal and malignant human hematopoiesis. Indeed, there are a number of strategies to generate humanized mice and specific protocols, including techniques to optimize the cytokine environment of recipient mice and drug alternatives or complementary to the standard conditioning regimens, that can be significantly modulated. Unfortunately, the high costs related to the use of sophisticated mouse models may limit the application of these models to studies that require an extensive experimental design. Here, using an affordable and convenient method, we demonstrate that the administration of fludarabine (FludaraTM) promotes the extensive and rapid engraftment of human normal hematopoiesis in immunodeficient mice. Quantification of human CD45+ cells in bone marrow revealed approximately a 102-fold increase in mice conditioned with irradiation plus fludarabine. Engrafted cells in the bone marrow included hematopoietic stem cells, as well as myeloid and lymphoid cells. Moreover, this model proved to be sufficient for robust reconstitution of malignant myeloid hematopoiesis, permitting primary acute myeloid leukemia cells to engraft as early as 8 weeks after the transplant. Overall, these results present a novel and affordable model for engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    Chapter 18. DAYCENT Simulated Effects of Land Use and Climate on County Level N Loss Vectors in the USA

    Get PDF
    We describe the nitrogen (N) gas (NH3, NOx, N2O, N2) emission and NO3 leaching submodels used in the DAYCENT ecosystem model and demonstrate the ability of DAYCENT to simulate observed N2O emission and NO3 leaching rates for various sites representing different climate regimes, soil types, and land uses. DAYCENT simulated seven major crops, grazing lands, and potential native vegetation at the county level for the United States. At the national scale, NO3 leaching was the major loss vector, accounting for 86%, 66%, and 56% of total N losses for cropped soils, grazed lands, and native vegetation, respectively. NH3 volatilization + NOx emissions made up the majority of national N gas losses, accounting for 58%, 89%, and 86% of N gas losses from cropped soils, grazed lands, and native vegetation, respectively. However, there was considerable spatial variability in the N loss vectors, with leaching accounting for less than 20% of total N losses and NOx + NH3 emissions accounting for less than 50% of N gas losses in some counties. Land use area weighted mean annual N losses were 43.9 (SD = 26.8) and 12.3 (SD = 22.2)kg N/ha for cropped/grazed and native systems, respectively. Area weighted mean annual N gas losses were 11.8 (SD = 4.8) and 5.4 (SD = 2.1)kg N/ha for cropped/grazed and native systems, respectively. Total N losses and NO3 leaching tended to increase as N inputs and precipitation increased, and as soils became coarser textured. Total N gas losses also increased with N inputs and as soils became coarser textured, but N2O and N2 made up a larger portion of N gas losses as soils became finer textured and as precipitation increased

    Differential Helical Orientations among Related G Protein-coupled Receptors Provide a Novel Mechanism for Selectivity: STUDIES WITH SALVINORIN A AND THE κ-OPIOID RECEPTOR

    Get PDF
    Salvinorin A, the active component of the hallucinogenic sage Salvia divinorum, is an apparently selective and highly potent kappa-opioid receptor (KOR) agonist. Salvinorin A is unique among ligands for peptidergic G protein-coupled receptors in being nonnitrogenous and lipid-like in character. To examine the molecular basis for the subtype-selective binding of salvinorin A, we utilized an integrated approach using chimeric opioid receptors, site-directed mutagenesis, the substituted cysteine accessibility method, and molecular modeling and dynamics studies. We discovered that helix 2 is required for salvinorin A binding to KOR and that two residues (Val-108(2.53) and Val-118(2.63)) confer subtype selectivity. Intriguingly, molecular modeling studies predicted that these loci exhibit an indirect effect on salvinorin A binding, presumably through rotation of helix 2. Significantly, and in agreement with our in silico predictions, substituted cysteine accessibility method analysis of helix 2 comparing KOR and the delta-opioid receptor, which has negligible affinity for salvinorin A, revealed that residues known to be important for salvinorin A binding exhibit a differential pattern of water accessibility. These findings imply that differences in the helical orientation of helix 2 are critical for the selectivity of salvinorin A binding to KOR and provide a structurally novel basis for ligand selectivity
    corecore