384 research outputs found
A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian
In this work we show a barrier towards proving a randomness-efficient
parallel repetition, a promising avenue for achieving many tight
inapproximability results. Feige and Kilian (STOC'95) proved an impossibility
result for randomness-efficient parallel repetition for two prover games with
small degree, i.e., when each prover has only few possibilities for the
question of the other prover. In recent years, there have been indications that
randomness-efficient parallel repetition (also called derandomized parallel
repetition) might be possible for games with large degree, circumventing the
impossibility result of Feige and Kilian. In particular, Dinur and Meir
(CCC'11) construct games with large degree whose repetition can be derandomized
using a theorem of Impagliazzo, Kabanets and Wigderson (SICOMP'12). However,
obtaining derandomized parallel repetition theorems that would yield optimal
inapproximability results has remained elusive.
This paper presents an explanation for the current impasse in progress, by
proving a limitation on derandomized parallel repetition. We formalize two
properties which we call "fortification-friendliness" and "yields robust
embeddings." We show that any proof of derandomized parallel repetition
achieving almost-linear blow-up cannot both (a) be fortification-friendly and
(b) yield robust embeddings. Unlike Feige and Kilian, we do not require the
small degree assumption.
Given that virtually all existing proofs of parallel repetition, including
the derandomized parallel repetition result of Dinur and Meir, share these two
properties, our no-go theorem highlights a major barrier to achieving
almost-linear derandomized parallel repetition
Entropy Samplers and Strong Generic Lower Bounds For Space Bounded Learning
With any hypothesis class one can associate a bipartite graph whose vertices are the hypotheses H on one side and all possible labeled examples X on the other side, and an hypothesis is connected to all the labeled examples that are consistent with it. We call this graph the hypotheses graph. We prove that any hypothesis class whose hypotheses graph is mixing cannot be learned using less than Omega(log^2 |H|) memory bits unless the learner uses at least a large number |H|^Omega(1) labeled examples. Our work builds on a combinatorial framework that we suggested in a previous work for proving lower bounds on space bounded learning. The strong lower bound is obtained by defining a new notion of pseudorandomness, the entropy sampler. Raz obtained a similar result using different ideas
AM with Multiple Merlins
We introduce and study a new model of interactive proofs: AM(k), or
Arthur-Merlin with k non-communicating Merlins. Unlike with the better-known
MIP, here the assumption is that each Merlin receives an independent random
challenge from Arthur. One motivation for this model (which we explore in
detail) comes from the close analogies between it and the quantum complexity
class QMA(k), but the AM(k) model is also natural in its own right.
We illustrate the power of multiple Merlins by giving an AM(2) protocol for
3SAT, in which the Merlins' challenges and responses consist of only
n^{1/2+o(1)} bits each. Our protocol has the consequence that, assuming the
Exponential Time Hypothesis (ETH), any algorithm for approximating a dense CSP
with a polynomial-size alphabet must take n^{(log n)^{1-o(1)}} time. Algorithms
nearly matching this lower bound are known, but their running times had never
been previously explained. Brandao and Harrow have also recently used our 3SAT
protocol to show quasipolynomial hardness for approximating the values of
certain entangled games.
In the other direction, we give a simple quasipolynomial-time approximation
algorithm for free games, and use it to prove that, assuming the ETH, our 3SAT
protocol is essentially optimal. More generally, we show that multiple Merlins
never provide more than a polynomial advantage over one: that is, AM(k)=AM for
all k=poly(n). The key to this result is a subsampling theorem for free games,
which follows from powerful results by Alon et al. and Barak et al. on
subsampling dense CSPs, and which says that the value of any free game can be
closely approximated by the value of a logarithmic-sized random subgame.Comment: 48 page
- …
