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Abstract
With any hypothesis class one can associate a bipartite graph whose vertices are the hypothesesH
on one side and all possible labeled examples X on the other side, and an hypothesis is connected
to all the labeled examples that are consistent with it. We call this graph the hypotheses graph.
We prove that any hypothesis class whose hypotheses graph is mixing cannot be learned using
less than Ω(log2 |H|) memory bits unless the learner uses at least a large number |H|Ω(1) labeled
examples. Our work builds on a combinatorial framework that we suggested in a previous work
for proving lower bounds on space bounded learning. The strong lower bound is obtained by
defining a new notion of pseudorandomness, the entropy sampler. Raz obtained a similar result
using different ideas.
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1 Introduction

Let H be a family of Boolean hypotheses. One can learn an hypothesis from H after seeing
O(log |H|) random labeled examples. Intuitively, this is true since a typical labeled example
cuts the number of possible hypotheses by a factor of two. However, learning with so few
examples requires enough memory to store Θ(log |H|) examples in memory. If X is the family
of possible labeled examples, then such a learner uses Θ(log |X | · log |H|) memory bits. It
is also possible to learn H using many fewer memory bits: enumerate the hypotheses one
by one, moving to the next hypothesis only after encountering a new labeled example that
is inconsistent with the current hypothesis. Such a brute force learner uses only log |H|
memory bits but requires an extravagant number Θ(|H| log |H|) of labeled examples. A
natural question is whether one can learn with both � Θ(log |X | · log |H|) memory bits and
� |H| labeled examples.
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Perhaps surprisingly, Raz [8] showed that parities (X = {0, 1}n × {0, 1} and H =
{⊕i∈Ixi|I ⊆ {1, . . . , n}}) cannot be learned unless the learner uses either Ω(log |X |·log |H|) =
Ω(n2) memory bits or |H|Ω(1) = 2Ω(n) labeled examples. Until recently, parities gave the
only hypothesis classes known with strong lower bounds on space-bounded learning1.

In this work we show that strong lower bounds hold for any hypothesis class that satisfies
a natural combinatorial condition about the mixing of a graph associated with the class.
This subsumes the result on parities and shows similar results for random classes and classes
that correspond to error correcting codes [6]. Many other applications follow using the large
body of research on combinatorial mixing (see, e.g., [2]). More details will appear in the full
version of this paper.

An hypothesis class can be described by a bipartite graph whose vertices are the hypotheses
H and the labeled examples X , and whose edges connect every hypothesis h ∈ H to the
labeled examples (x, y) ∈ X that are consistent with it, i.e., h(x) = y. We say that the
hypothesis class is d-mixing if for any set of hypotheses A ⊆ H and any set B ⊆ X of
labeled examples it holds that ||E(A,B)| − |A||B|/2| ≤ d

√
|A||B|, where E(A,B) is the set

of edges between A and B in the hypotheses graph. For instance, for parities, d = Θ(
√
|X |)

(see, e.g., [6]). We prove that mixing hypothesis classes admit strong lower bounds on
space-bounded learning.

I Theorem 1 (main theorem). If the hypotheses graph is d-mixing, r := |H||X |
d2 and |H| are at

least some constants, then any learning algorithm that outputs the underlying hypothesis with
probability at least r−Θ(1) must use at least Ω(log2 r) memory bits or rΩ(1) labeled examples.

A similar theorem holds if the learner only approximately learns the underlying hypothesis [6].

1.1 Related Work
In this work we rely on a combinatorial framework – henceforth referred to as the low
certainty framework – that we introduced in a previous work for analyzing space-bounded
learning [6]. In [6] the bound on the number of memory states was only ≈ |H|1.25 (the
bound on the number of labeled examples was the optimal |H|Ω(1)). In between those two
works (the current work and [6]) Raz [9] showed a lower bound of Ω(log2 |H|) on the number
of memory bits (as in the current paper), relying on a spectral mixing condition instead
of a combinatorial mixing condition. In a subsequent work, Garg, Raz and Tal [3], and,
independently, Beame, Gharan and Yang [1], improved the lower bound to the optimal
|X |Ω(log |H|).

1.2 Entropy Sampler
The key idea in the current work is a new notion of pseudorandomness, which we call the
entropy sampler. Fix a probability distribution p over a spaceM. For every element m ∈M
let its “entropy level” be km = log(1/p(m)). The min-entropy of p is minm km. A sampler
with multiplicative error is defined as follows:

1 Kol, Raz and Tal [4] generalized Raz’s work to parities on l variables out of n, showing that either
Ω(n) memory bits or 2Ω(l) examples are needed, and for l ≤ n0.9, either Ω(nl0.99) memory bits or
lΩ(l) examples are needed. Note: (1) For small l there are learners with both � |X|Ω(log |H|) = nΩ(nl)

memory states and � |H|Ω(1) = nΩ(l) examples [4]. (2) The work [4] implies lower bounds for classes
that contain parities on l out of n variables. To get a result for interesting classes, like DNFs or decision
trees, one can pick l ≈ log n, but then the lower bounds are weak.
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I Definition 2 (Sampler). A bipartite graph (M,H, E) is a sampler with multiplicative
factor L, min-entropy k and error ε, if for every distribution p overM of min-entropy at
least k, for every H ⊆ H, |H| ≥ ε|H|,∑

m∈M
p(m) · |E(m,H)|

|E(m,H)| ≤ L ·
|H|
|H|

,

where E(·, ·) denotes the set of edges between given memories and hypotheses in the knowledge
graph.
The parameters of the sampler L, ε, are typically related to the min-entropy k. The higher
the min-entropy k is, the lower the sampling parameters are. However it’s possible, e.g., that
all elements are at high entropy levels, except for one, for the min-entropy to be low and
for the sampling parameters to be high. An entropy samplerbenefits from elements of all
entropy levels starting k; higher entropy levels contribute to better sampling. Formally:
I Definition 3 (entropy sampler). A bipartite graph (M,H, E) is an entropy samplerwith
multiplicative factor L, min-entropy k, error ε and benefit α if for every distribution p of
min-entropy k, for every H ⊆ H, |H| ≥ ε|H|,∑

m∈M
p(m) · |E(m,H)|

|E(m,H)| · 2
α·km ≤ L · |H|

|H|
.

Typically, pseudorandom objects can only be defined with respect to min-entropy, and
therefore the notion of an entropy sampleris unusual and may have other applications.

1.3 Proof Outline
The proof of Theorem 1 builds on the low certainty framework of [6]. A key object in the
framework is the knowledge graph of the algorithm at various time steps. The knowledge
graph at a certain time step is a bipartite graph, where one side corresponds to memory
states of the learning algorithm and the other side corresponds to the possible hypotheses
in H. There is an edge (m,h) between a memory state m and an hypothesis h for every
sequence of labeled examples that is consistent with h and leads to m at the relevant time
step. Note that when an hypothesis is picked uniformly at random, the neighborhood of
a memory state corresponds to the probability distribution over the possible hypotheses
conditioned on landing in the memory state at the relevant time step. In this respect, the
knowledge graph captures exactly the knowledge of the algorithm about the underlying
hypothesis at the time step.

In order to prove lower bounds, the work [6] shows that when the hypotheses graph is
mixing and the space is sufficiently bounded, the knowledge graph remains “pseudorandom”
throughout the execution of the algorithm. Unfortunately, the pseudorandomness property
of [6] (analogous to an extractor property) no longer holds when we wish to rule out learners
that can store whole labeled examples in memory. The main idea of the current work is
to prove that the knowledge graph is instead an entropy sampler(or, rather, a version of
Definition 3 that is suitable for the knowledge graph). We show this by induction on the time
t in the execution of the algorithm. Every probability distribution over memories at time
t+ 1 corresponds to a probability distribution over memories at time t. This distribution
depends on the likelihood of transitions to the time t+ 1 memories. Roughly speaking, less
likely transitions from time t to time t+ 1 may give a lot of information about the underlying
hypothesis. The notion of an entropy samplerguarantees that even after taking the new
information into account sampling still holds (the actual analysis is quite involved, partly
because it takes irregularity into account).

ITCS 2018
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2 Preliminaries

log(·) always means log2(·). The following claims were proven in [6]:

I Claim 4. Let p be a probability distribution over a set A with
∑
i∈A p(i)2 ≤ r. Then, for

every A′ ⊆ A it holds that
∑
i∈A′ p(i) ≤

√
|A′|r.

I Claim 5 (generalized law of total probability). For any events A,B and a partition of the
sample space C1, . . . , Cn,

Pr(A|B) =
∑
i

Pr(A|B,Ci) Pr(Ci|B).

I Claim 6 (generalized Bayes’ theorem). For any three events A,B,C,

Pr(A|B,C) = Pr(B|A,C) Pr(A|C)
Pr(B|C)

I Claim 7. Suppose B1, . . . , Bn are some disjoint events. Then,

Pr(A|B1 ∪ . . . ∪Bn) =
n∑
i=1

Pr(A|Bi)
Pr(Bi)

Pr(B1 ∪ . . . ∪Bn) .

2.1 Mixing
For a bipartite graph (A,B,E), A are the left vertices and B are the right vertices. For sets
S ⊆ A, T ⊆ B let

E(S, T ) = {(a, b) ∈ E|a ∈ S, b ∈ T}.

For a ∈ A (and similarly for b ∈ B) the neighborhood of a is Γ(a) = {b ∈ B|(a, b) ∈ E}, and
the degree of a is da = |Γ(a)|. If all da are equal, we say that the graph is da-left regular or
just left regular. We similarly define right regularity.

I Definition 8 (mixing). We say that a bipartite graph (A,B,E) with average left degree
d̄A is d-mixing if for any S ⊆ A, T ⊆ B it holds that∣∣∣∣|E(S, T )| − |S||T |

|B|/d̄A

∣∣∣∣ ≤ d
√
|S||T |

I Definition 9 (sampler). A bipartite graph (A,B,E) is an (ε, ε′)-sampler if for every T ⊆ B
it holds that

Pr
a∈A

(∣∣∣∣ |Γ(a) ∩ T |
da

− |T |
|B|

∣∣∣∣ > ε

)
< ε′,

where a is sampled uniformly.

We say that a vertex a ∈ A samples T correctly if
∣∣∣∣ ∣∣Γ(a)∩T

∣∣
da

− |T ||B|

∣∣∣∣ ≤ ε. The sampler

property implies that there are only a few vertices S ⊆ A that do not sample T correctly.

I Claim 10 (Mixing implies sampler). If a bipartite graph (A,B,E) is d-mixing and dA-left
regular then it is also an (ε, 2d2|B|

d2
A
ε2|A| )-sampler for any ε > 0. Specifically, if dA = |B|/2 then

the graph is an (ε, 8d2

|B||A|ε2 )-sampler for any ε > 0.

Proof. See Claim 13 in [6]. J
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3 The Low Certainty Framework

In this section we will summarize the main components of the combinatorial framework
presented in our earlier work [6].

3.1 Hypotheses Graph
The hypotheses graph associated with an hypothesis class H and labeled examples X is a
bipartite graph whose vertices are hypotheses in H and labeled examples in X , and whose
edges connect every hypothesis h ∈ H to the labeled examples (x, y) ∈ X that are consistent
with h, i.e., h(x) = y.

Let us explore a few examples of hypothesis classes with mixing property.

parity. The hypotheses in PARITY (n) are all the vectors in {0, 1}n, and the labeled
examples are {0, 1}n × {0, 1} (i.e., |H| = 2n and |X | = 2 · 2n).

I Lemma 11 (Lindsey’s Lemma). Let H be a n× n matrix whose entries are 1 or −1 and
every two rows are orthogonal. Then, for any S, T ⊆ [n],∣∣∣∣∣∣

∑
i∈S,j∈T

Hi,j

∣∣∣∣∣∣ ≤√|S||T |n.
Lindsey’s Lemma and Claim 11 from [6] imply that the hypotheses graph of PARITY (n)

is O(
√
|X |)-mixing.

random class. For each hypothesis h and an example x, we have h(x) = 1 with probability
1/2. The hypotheses graph is a random bipartite graph. It is well known that this graph is
mixing (see [5]).

We can rephrase Claim 10 for the hypotheses graph and get

I Proposition 12. If a graph (H,X , E) is d-mixing then it is also (ε, 8d2

|H||X |ε2 )-sampler for
any ε > 0.

3.2 H-expander
The main notion of expansion we will use for the hypotheses graph is H-expander, as we
define next (H stands for Hypotheses graph). This notion follows from mixing (Definition 8).

I Definition 13 (H-expander). A left regular bipartite graph (A,B,E) with left degree dA is
an (α, β, ε)-H-expander if for every T ⊆ B,S ⊆ A, with |S| ≥ α|A|, |T | ≥ β|B| it holds that∣∣∣∣|E(S, T )| − |S||T |

|B|/dA

∣∣∣∣ ≤ ε|S||T |.
For example, the hypotheses graph (H,X , E) is left regular with left degree |X |/2, so in this
case the denominator |B|/dA will be equal to 2.

Note the following simple observation that relates mixing and H-expander.

I Proposition 14. If a graph (H,X , E) is d-mixing then it is also (α, β, 2d√
α|H|β|X |

) −
H-expander, for any α, β ∈ (0, 1).

ITCS 2018
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3.3 Knowledge Graph
I Definition 15 (knowledge graph). The knowledge graph at time t of a learning algorithm
with memory statesM for an hypothesis class H is a bipartite multigraph Gt = (H,M, Et)
where an edge (h,m) ∈ Et corresponds to a series of t labeled examples (x1, y1), . . . , (xt, yt)
with h(xi) = yi for every 1 ≤ i ≤ t and the algorithm ends up in memory state m after
receiving these t examples.

At each step we will remove a tiny fraction of the edges from the knowledge graph and
we focus only on the memories Mt — denote this graph by G′t. We can read off from this
graph the probability qt(h,m) which indicates the probability that the algorithm reached
memory m after t steps and all examples are labeled by h. The probability qt(h,m) is
proportional to the number of edges E′t(m,h) between a memory m and an hypothesis
h in the graph G′t. We can also observe the conditional probability qt(m|h) which is the
probability that the algorithm reached memory state m given that all the examples observed
after t steps are consistent with hypothesis h. We can deduce the probability of a memory
m: qt(m) =

∑
t qt(m|h)qt(h). We can also find the probability of a set of memories M ⊆M,

qt(M) =
∑
m∈M qt(m). If the algorithm, after t steps, is in memory state m, we can deduce

the probability that the true hypothesis is h, qt(h|m) = qt(m|h)qt(h)
qt(m) .

3.4 Certainty
Throughout the analysis we will maintain a substantial set of memories Mt ⊆M and a set
of hypotheses Ht ⊆ H. At time t we pick the underlying hypothesis uniformly from Ht and
only consider memories in Mt. Initially, before any labeled example is received, H0 = H and
M0 contains all the memories. At later times, Ht and Mt will exclude certain bad hypotheses
and memories.

Certainty is a progress measure for the learning algorithm defined as follows:

I Definition 16 (certainty). The certainty of a memory m at time t is defined as∑
h

qt(h|m)2.

The average certainty of a set of memories M at time t is defined as

cert(M) :=
∑
m∈M

qt(m)
∑
h

qt(h|m)2.

To simplify the notation we write cert(m) when we mean cert({m}) = qt(m)
∑
h qt(h|m)2,

i.e., the average certainty with the set {m} of memories. We also define a weighted certainty
using a weight vector w of length |M| and each coordinate in w is some value in [0, 1] by

certw(M) =
∑
m∈M

qt(m)wm · q2
t (h|m).

Note that if w is the all 1 vector then certw(M) = cert(M).
At each time t we will focus only on memories that are not too certain, i.e., whose

certainty is not much more then the average certainty. Using Markov’s inequality we will
prove that with high probability the algorithm only reaches these not-too-certain memories.
Let us define this set more formally,

BadcM =
{
m ∈M

∣∣∣∣∑
h

q2
t (h|m) > c · cert(Mt)

}
,
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for some c > 0, that is of the order |H|ε, for some small constant ε. Oftentimes, we will omit
c when it is clear from the context. For all t ≥ 1 we will make sure that Mt will not include
BadcM (and additional memories, as will be defined in later sections). The following claims
are proved in [6].

I Claim 17. For any c > 0 and time t, qt(BadcM ) ≤ 1/c

There is an equivalent definition of certainty in terms of the certainty of the hypothesis,
rather than the memory.

I Claim 18. For each memory m, hypothesis h and time t

qt(m)qt(h|m)2 = qt(h)qt(h|m)qt(m|h)

In particular we can prove

I Claim 19. The average certainty is also equal to

cert(M) =
∑
h∈H

qt(h)
∑
m∈M

qt(h|m)qt(m|h).

We can therefore define the certainty of an hypothesis h, when focusing on a set of memories
M as∑

m∈M
qt(h|m)qt(m|h)

Given the last claim in mind we define

BadcH = {h ∈ H
∣∣ ∑
m∈Mt

qt(m|h)qt(h|m) > c · cert(Mt)}.

Oftentimes, we will omit c when it is clear from the context.
Define H1 = H and for t > 1, Ht+1 = Ht \ BadH . We will define the distribution over

the hypotheses at time t by qt(h) = 1
|Ht| if h ∈ Ht, else qt(h) = 0. The next claim proves

that Ht is large.

I Claim 20. For any c > 0, |Ht+1| ≥ (1− 1/c)|Ht|.

In the rest of the paper we will prove that the average certainty of Mt, even for a large
t ∼ log c, will be at most c

|H| , and later we choose c ∼ log |H||X |d2 .

I Claim 21. Suppose that the learning algorithm ends after t steps, |Ht| ≥ 3 and at most γ
fraction of the edges were removed from the knowledge graph. Then, there is an hypothesis h
such that the probability to correctly return it is at most

3
√
c · cert(Mt) + 3(1− qt(Mt)) + γ

3.5 Representative Labeled Examples
For each memory m at time t, a representative labeled example x is one with qt(x|m) equal
roughly to 1

|X | . In particular, given m and the unlabeled example, the probability to guess
the label is roughly 1/2.

ITCS 2018
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I Definition 22. Let m be a memory state at time t, and let εrep > 0. We say that a labeled
example x is εrep-representative at m if

1− εrep

|X |
≤ qt+1(x|m) ≤ 1 + εrep

|X |

We denote the set of labeled examples that are not εrep-representative at m by NRep(m, εrep).

In [6] a weaker notion of NRep with some specific constant εrep was used.

I Claim 23. Let m be a memory in the knowledge graph at time t with certainty bounded
by r, i.e.,

∑
h qt(h|m)2 ≤ r, assuming the hypotheses graph is an (α, β, ε) − H-expander,

|NRep(m, 4
√
α|H|r + 4ε)| ≤ 2β.

We prove this claim in Section 3.5.1.

3.5.1 Auxiliary Claims
The next claim will imply an equivalent definition for NRep.

I Claim 24. For any set of labeled examples S ⊆ X and a memory m it holds that

qt+1(S|m) =
∑
h

Pr(S|h)qt(h|m).

Proof. Using Claim 5 we know that

qt+1(S|m) =
∑
h

qt+1(S|m,h)qt(h|m)

=
∑
h

Pr(S|h)qt(h|m)

J

Using Claim 24, we know that the not-representative set NRep(m, εrep) is also equal to{
x ∈ X |

∑
h∈H

Pr(x|h)qt(h|m) < 1− εrep

|X |

}
∪

{
x ∈ X |

∑
h∈H

Pr(x|h)qt(h|m) > 1 + εrep

|X |

}
.

We would like to prove that NRep(m, εrep) is small for any memory with small certainty.
Note that

qt(h|m,x) ∝ qt(h|m)I(x,h)∈E ,

where I(x,h)∈E means that x and h are connected in the hypotheses graph (this follows from
Claim 6 with A = {h}, B = {x}, C = {m} and qt(x|h,m) = qt(x|h) = 2

|X |I(x,h)∈E). This
probability distribution can be imagined as if it were constructed by taking the hypotheses
graph and adding weight qt(h|m) to every hypothesis h. Keeping this observation in mind
we need some new notation.

Suppose there is a weight wi for each hypothesis in the hypotheses graph (H,X , E). Then,
define the weights between sets S ⊆ H and T ⊆ X by w(S, T ) :=

∑
s∈S,t∈T w(s)I(s,t)∈E

and w(S) :=
∑
s∈S w(s). We would like to prove that even if there are weights on the

hypotheses the hypotheses graph is still pseudo-random. More formally, we will use the
following definition.
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I Definition 25. A left regular bipartite graph (A,B,E) is (β, ε)−weighted-expander with
weights w1, . . . , w|A|,

∑
i wi = 1, ∀i, wi ≥ 0, and left degree dA if for every S ⊆ A and

T ⊆ B, |T | ≥ β|B| it holds that∣∣∣∣w(S, T )− w(S)
|B|/dA

|T |
∣∣∣∣ ≤ ε|T |

The next claim proves that any H-expander is a also a weighted-expander assuming low `22
weights.

I Claim 26. [see [6]] If the hypotheses graph (H,X , E) is an (α, β, ε) − H-expander and∑|H|
i=1 w

2
i ≤ r then the hypotheses graph is a (β, 2ε + 2

√
α|H|r) − weighted-expander with

weights w1, . . . , w|H|.

Next we will prove our main claim in this section.

Proof of Claim 23. Denote ε∗ = 4
√
α|H|r + 4ε. Define T1 = {x|

∑
h∈H Pr(x|h)qt(h|m) <

1−ε∗
|X | } and define weights to hypotheses w(h) = qt(h|m). From the definition of T1 we know
that ∑

h∈H,x∈T1

Pr(x|h)qt(h|m) < |T1|(1− ε∗)
|X |

.

The left term is equal to∑
h∈H,x∈T1

2
|X |

I(x,h)∈Eqt(h|m) = w(H, T1) 2
|X |

Assume by a way of contradiction that |T1| ≥ β|X |, then Claim 26 implies that

w(H, T1) 2
|X |

≥
(
w(H)

2 |T1| − 2(
√
α|H|r + ε)|T1|

)
2
|X |

= |T1|
|X |
− 2
√
α|H|r2|T1|

|X |
− 2ε2|T1|

|X |
,

where the equality follows from the fact that w(H) = 1.
Thus

|T1|(1− ε∗)
|X |

>
|T1|
|X |
− 2
√
α|H|r2|T1|

|X |
− 2ε2|T1|

|X |
,

⇒ 4
√
α|H|r + 4ε > ε∗.

But the latter contradicts the definition of ε∗. Hence we can deduce that |T1| < β|X |.
Similarly, define T2 = {x|

∑
h∈H Pr(x|h)qt(h|m) > 1+ε∗

|X | }. Assume by a way of contradic-
tion that |T2| ≥ β|X | then

(1 + ε∗)|T2|
|X |

<
∑
h∈H

Pr(T2|h)qt(h|m) ≤ |T2|
|X |

+ 2
√
α|H|r2|T2|

|X |
+ 2ε2|T2|

|X |
,

where the left inequality follows from the definition of T2 and the right inequality follows
from Claim 26. So again we conclude that |T2| < β|X |. J

ITCS 2018
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3.6 Decomposition to Heavy and Many Steps
We show that the certainty does not increase much with a single step of the algorithm. To
this end, we decompose almost all the transitions of the bounded space algorithm to two
kinds: either a heavy-sourced or many-sourced. A heavy-sourced memory state at time t+ 1
is one to which the algorithm moves from a memory state at time t via any labeled example
from a large family of labeled examples. A many-sourced memory state at time t+ 1 is one
that has many possible time-t sources. We analyze each kind of transition separately using
H-expansion and K-expansion. For more details see [6].

4 Knowledge Graph Remains Pseudorandom

In this section we define a pseudorandomness property for the knowledge graph and prove
that the knowledge graph maintains it throughout the execution of the algorithm, provided
that the certainty is low and the hypotheses graph is mixing. To complete the proof we use
the pseudorandomness of the knowledge graph to deduce the main theorem by adapting the
low certainty framework [6]. For details see [7].

I Definition 27 (enlarging distribution). We say that a distribution p over the memories is
(β, γ)-enlarging with respect to a probability distribution q if for every memory m it holds
that p(m) ≤ q(m)

β and if p(m) > 0 then p(m) ≥ q(m)
β · γ.

β and γ provide a certain measure of the entropy in p. As usual, it is useful to use a
logarithmic scale to measure the entropy and our log scale will be with respect to a parameter
γ0 associated with the hypothesis class.

I Definition 28 (entropy-level). The (p, q, β, γ0)-entropy-level of an element m is defined as

eγ0(m) = logγ0

p(m)β
q(m) .

In other words, if p(m) = qt(m)
β γi0, then eγ0(m) = i.

I Definition 29 (entropy sampler). We say that the knowledge graph G′t is an (α, β, `, γ0, k)−
entropy sampler if for every H ⊆ H with |H| ≥ α|H| and every (β, γk0 )-enlarging distribution
p it holds that∑

m

Pr(H|m)p(m)2eγ0 (m) ≤ ` · |H|
|H|

The usual definition of sampler with multiplicative error is∑
m

Pr(H|m)p(m) ≤ ` · |H|
|H|

.

Our definition requires more and seeks to benefit from memory states whose probability is
much lower than qt(mt)/β.

Denote by Smt,mt+1 ⊆ X the examples that cause the memory to change from mt to
mt+1.

I Claim 30. Let t ≥ 1. Assume that the following conditions hold:
1. The hypotheses graph is d-mixing.
2. The graph G′t is an (α′, β′, `, γ0, k)− entropy sampler.
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3. All the edges (mt,mt+1) with labeled example x in G′t are representative, i.e., qt+1(x|mt) /∈
NRep(mt, εrep).

4. All memories have low certainty, i.e., for all mt in G′t, cer(mt) ≤ c · cert(Mt) and
cert(Mt) ≤ c/|H|.

5. β′ ≥ γk−1
0 and α′ ≥ 2k+2√γ0 + 2k+2 · c ·

√
16
γ11

0
· d2

|X ||H| .
6. εrep ≤ 1/2, and γ0 ≤ 1/16.

Then, G′t+1 is an (α′, β′,
(
1 + 10√γ0 + 2εrep

)
`, γ0, k)− entropy sampler

Proof. We can define a distribution qt+1 over pairs (mt, Sm
t,mt+1) where mt is a memory at

time t and Smt,mt+1 ⊆ X is the set of labeled examples that lead from mt to mt+1, in the
following way

qt+1(mt, Sm
t,mt+1

) := qt(mt)qt+1(Sm
t,mt+1

|mt).

Fix a β′-enlarging distribution p (with respect to qt+1) over memories at time t+1 and denote
its support by Mt+1. For each mt+1 ∈Mt+1, denote p(mt+1) = qt+1(mt+1)

β′
mt+1

, for β′mt+1 ≥ β′.

This induces the distribution p(mt, Sm
t,mt+1) := qt(mt)qt+1(Sm

t,mt+1
|mt)

β′
mt+1

. Indeed,

p(mt+1) = qt+1(mt+1)
β′mt+1

=
∑
mt qt+1(mt, Sm

t,mt+1)
β′mt+1

=
∑
mt

p(mt, Sm
t,mt+1

)

The probability that p induces on memories at time t is

p(mt) :=
∑
mt+1

p(mt, Sm
t,mt+1

) = qt(mt)
∑
mt+1

qt+1(Smt,mt+1 |mt)
β′mt+1

.

Fix H ⊆ H with |H| ≥ α′|H|. In order to prove the claim, we would like to bound the
expression

∑
mt+1∈Mt+1

qt+1(H|mt+1)p(mt+1)2eγ0 (mt+1)

=
∑

mt+1∈Mt+1

qt+1(H|mt+1)p(mt+1)2logγ0
p(mt+1)β′

qt+1(mt+1) (1)

The proof consists of five steps:

ITCS 2018



28:12 Generic Lower Bounds For Space Bounded Learning

Step 1: Rewrite Expression 1 in terms of memories at time t:
Since p(mt+1) = qt+1(mt+1)

β′
mt+1

, Expression (1) is equal to

∑
mt+1∈Mt+1

qt+1(H|mt+1)p(mt+1)2
logγ0

β′

β′
mt+1

(dfn. of mt+1) =
∑

mt+1∈Mt+1

qt+1(H| ∨mt (mt, Sm
t,mt+1

))p(mt+1)2
logγ0

β′

β′
mt+1

(Claim 7) =
∑

mt+1∈Mt+1
mt∈Mt

qt+1(H|mt, Sm
t,mt+1

)qt+1(mt, Sm
t,mt+1)

qt+1(mt+1) p(mt+1)2
logγ0

β′

β′
mt+1

(dfn. of p) =
∑

mt+1∈M
mt∈Mt,h∈H

qt+1(h|mt, Sm
t,mt+1

)

qt+1(mt, Sm
t,mt+1)

qt+1(mt+1)
qt+1(mt+1)
β′mt+1

2
logγ0

β′

β′
mt+1

=
∑

mt+1∈M
mt∈Mt,h∈H

qt+1(h|mt, Sm
t,mt+1

)qt(m
t)qt+1(Smt,mt+1 |mt)

β′mt+1
2

logγ0
β′

β′
mt+1

(Claim 6) =
∑

mt+1∈Mt+1
mt∈Mt,h∈H

qt(h|mt)

qt+1(Smt,mt+1 |mt, h)
qt+1(Smt,mt+1 |mt)

qt(mt)qt+1(Smt,mt+1 |mt)
β′mt+1

2
logγ0

β′

β′
mt+1

(dfn. of qt+1) =
∑

mt∈Mt,h∈H

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
β′mt+1

2
logγ0

β′

β′
mt+1 (2)

In the next steps we will prove that for most memories mt and for most hypotheses h the
term inside the outer sum in (2) is bounded, that is,

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
β′mt+1

2
logγ0

β′

β′
mt+1 . qt(h|mt)p(mt)2eγ0 (mt) (3)

Moreover, the effect of the other memories and hypothesis is negligible. Proving the latter
will finish the proof since G′t is a entropy sampler.
1. In step 2 we show that memories mt with low p(mt) do not add much to Expression (2).
2. In step 3 we focus on a memory mt whose p(mt) is now low. To show that Inequality (3)

holds for most hypotheses h we first recall that since

p(mt) = qt(mt)
∑
mt+1

qt+1(Smt,mt+1 |mt)
β′mt+1

,

we need to prove that∑
mt+1

Pr(Smt,mt+1 |h)
β′mt+1

2
logγ0

β′

β′
mt+1 .

∑
mt+1

qt+1(Smt,mt+1 |mt)
β′mt+1

2eγ0 (mt) (4)
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In step 3 we show that for most hypotheses h it holds that

Pr(Sm
t,mt+1

|h) ∼ |S
mt,mt+1 |
|X |

∼ qt+1(Sm
t,mt+1

|mt).

3. In step 4 we show that the hypotheses that are not considered in the previous step do
not add much to Expression (2).

4. In step 5 we would like to show that Inequality (4) holds. After step 3 and the definition
of eγ0(m) this is merely showing that

∑
mt+1∈Mt+1

Pr(Smt,mt+1 |mt)
β′mt+1

2
logγ0

β′

β′
mt+1

.

(∑
mt+1

qt+1(Smt,mt+1 |mt)
β′mt+1

)
2

logγ0 β
′
∑

mt+1
qt+1(Sm

t,mt+1
|mt)

β′
mt+1

This is proved in step 5 using Jensen’s inequality.

5. In step 6 we sum everything up.

Step 2: getting rid of low p-weight memories at time t: In order to use the as-
sumption in the claim regarding the entropy sampler property of G′t, we need to make sure
that for each memory mt at time t, p(mt) = 0 or p(mt) ≥ qt(mt)

β′/γk0
. Denote by Low the set of

all memories mt at time t with 0 < p(mt) < qt(mt)
β′/γk0

. Note that this set has low p-weight

p(Low) =
∑

mt∈Low

p(mt) <
∑

mt∈Low

qt(mt)γ
k
0
β′
≤ γk0
β′
≤ γ0, (5)

where the last inequality is true since β′ ≥ γk−1
0 . Thus, by setting the probability of the

memories in Low to 0, the remaining memories need to be multiplied by a factor of at most
1/(1− γ0) (i.e., by a factor that is close to 1) so as to make it a distribution again. More
formally, we divide the sum that we want to bound, Expression (2), into two sums depending
on the membership in Low:

∑
mt∈Low,h∈H

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
β′mt+1

2
logγ0

β′

β′
mt+1 +

+
∑

mt∈Mt\Low,h∈H

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
β′mt+1

2
logγ0

β′

β′
mt+1 (6)

For mt ∈ Low, the expression 2
logγ0

β′

β′
mt+1 is at most 2k (since qt+1(mt+1)

β′
mt+1

= p(mt+1) ≥
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qt+1(mt+1)γk0
β′ for any mt+1). Thus, the first term in Expression (6) is at most

∑
mt∈Low,h∈H

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
β′mt+1

· 2k

(see Claim 32) ≤
∑

mt∈Low,h∈H

qt(h|mt)qt(mt)·

∑
mt+1∈Mt+1

2(1 + 2εrep)qt+1(Smt,mt+1 |mt)
β′mt+1

· 2k

(definition of p(mt)) =
∑

mt∈Low

qt(H|mt)2k+1(1 + 2εrep)p(mt)

(qt(H|mt) ≤ 1, εrep ≤ 1/2) ≤ 2k+2
∑

mt∈Low

p(mt)

(see Inequality (5)) ≤ 2k+2γ0 (7)

Denote s = p(Low). The second term in Expression (6) is equal to

(1− s)
∑

mt∈Mt\Low,h∈H

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
(1− s)β′mt+1

2
logγ0

β′
1−s
1−s ·β

′
mt+1

which is at most

∑
mt∈Mt\Low,h∈H

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
(1− s)β′mt+1

2
logγ0

β′

(1−s)β′
mt+1 · 2logγ0 1−s

Using Claim 34, γ0 ≤ 1/16, and Inequality (5), it is at most

(1 +√γ0)
∑

mt∈Mt\Low,h∈H

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
(1− s)β′mt+1

2
logγ0

β′

(1−s)β′
mt+1 (8)

Step 3: Pr(Smt,mt+1 |h) ∼ |S
mt,mt+1

|
|X | ∼ qt+1(Smt,mt+1 |mt): Focus on a memory mt /∈

Low. In this step we will prove that for most hypotheses h the term Pr(Smt,mt+1 |h) can be
replaced by Pr(Smt,mt+1 |mt). We would like to rewrite the inner sum,

∑
mt+1∈Mt+1

Pr(Smt,mt+1 |h)
β′mt+1

2
logγ0

β′

β′
mt+1 ,

in Expression (2). For this purpose we first sort all the memories in mt+1 ∈Mt+1 according

to ascending order of 2
logγ0

β′

β′
mt+1 /β′mt+1 . Denote by β′i the value β′mt+1 for mt+1 that is the

i-th member in the sorted order. Then we get that the inner sum in Expression (2) is equal
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to

∑
mi∈Mt+1

Pr(Sm
t,mi |h)2

logγ0
β′

β′
i

β′i
=

∑
j≥1

Pr(Sm
t,mj |h)2

logγ0
β′

β′1

β′1
+

+
∑
j≥2

Pr(Sm
t,mj |h)

2
logγ0

β′

β′2

β′2
− 2

logγ0
β′

β′1

β′1

+

+
∑
j≥3

Pr(Sm
t,mj |h)

2
logγ0

β′

β′3

β′3
− 2

logγ0
β′

β′2

β′2

+ . . .

Denote by Smt,≥i all the examples that lead from the memory mt to any of the time-(t+ 1)
memories that are not the first i− 1 memories. For convenience, define 1/β′0 := 0. Thus, it
holds that

∑
mi∈Mt+1

Pr(Sm
t,mi |h)2

logγ0
β′

β′
i

β′i
=
∑
i≥1

Pr(Sm
t,≥i|h)

2
logγ0

β′

β′
i

β′i
− 2

logγ0
β′

β′
i−1

β′i−1

 .

We divide this sum into two, using index i(mt) which is the largest i such that |Smt,≥i| ≥ ε′|X |,
for ε′ to be determined later.

i(mt)∑
i=1

Pr(Sm
t,≥i|h)

2
logγ0

β′

β′
i

β′i
− 2

logγ0
β′

β′
i−1

β′i−1

+

|Mt+1|∑
i=(i(mt))+1

Pr(Sm
t,≥i|h)

2
logγ0

β′

β′
i

β′i
− 2

logγ0
β′

β′
i−1

β′i−1

 (9)

Let us start with bounding the first term in Equation (9). From Claim 33, we know that
except for a fraction of 1

ε2 · d2

|X ||H| hypotheses h ∈ H for each i ≤ (1− ε′)|X |,

Pr(Sm
t,≥i|h) ≤

(
1 + ε′ + 4ε

(ε′)2

)
|Smt,≥i|
|X |

, (10)

for ε > 0 to be determined later. From Claim 32 we know that the RHS is at most(
1 + ε′ + 4ε

(ε′)2

)
(1 + 2εrep)qt+1(Sm

t,≥i|mt)

Denote the set of hypotheses that the bound in Inequality (10) does not apply to by Err(mt).
We know that

|Err(mt)|
|H|

≤ 1
ε2
· d2

|X ||H|
(11)

Let us now bound the second term in Expression (9). For each i > i(mt) we use the
simple bound given in Claim 32:

Pr(Sm
t,≥i|h) ≤ 2(1 + 2εrep)qt+1(Sm

t,≥i|mt). (12)
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We can now rewrite Expression (9) using Inequalities 10 and 12. Namely, for mt /∈ Low
and h /∈ Err(mt) Expression (9) is at most

(
1 + ε′ + 4ε

(ε′)2

)
(1 + 2εrep)

[ i(mt)∑
i=1

qt+1(Sm
t,≥i|mt)

2
logγ0

β′

β′
i

β′i
− 2

logγ0
β′

β′
i−1

β′i−1

+

|Mt+1|∑
i=(i(mt))+1

2 · qt+1(Sm
t,≥i|mt)

2
logγ0

β′

β′
i

β′i
− 2

logγ0
β′

β′
i−1

β′i−1

]

Which is equal to (
1 + ε′ + 4ε

(ε′)2

)
(1 + 2εrep) ·i(mt)∑

i=1
qt+1(Sm

t,mi |mt)2
logγ0

β′

β′
i

β′i
+

|Mt+1|∑
i=(i(mt))+1

qt+1(Sm
t,mi |mt)2 · 2

logγ0
β′

β′
i

β′i

 (13)

Step 4: getting rid of “bad” hypotheses: We would like to bound the portion of
Expression (2) that involves h ∈ Err(mt) for some mt. Namely, we would like to bound∑

mt∈Mt,h∈Err(mt)

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
β′mt+1

2
logγ0

β′

β′
mt+1 . (14)

For any mt+1, from the definition of p we know that qt+1(mt+1)
β′
mt+1

= p(mt+1) ≥ qt+1(mt+1)γk0
β′ ,

hence 2
logγ0

β′

β′
mt+1 ≤ 2k. Hence Expression (14) is at most∑

mt∈Mt,h∈Err(mt)

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

Pr(Smt,mt+1 |h)
β′mt+1

2k.

From Claim 32 we know that Pr(Sm
t,mt+1

|h)
β′
mt+1

≤ 4qt+1(Sm
t,mt+1

|mt)
β′
mt+1

. Hence, Expression (14) is
at most∑

mt∈Mt

h∈Err(mt)

qt(h|mt)qt(mt)
∑

mt+1∈Mt+1

qt+1(Smt,mt+1 |mt)
β′mt+1

2k+2

=
∑

mt∈Mt

h∈Err(mt)

qt(h|mt)p(mt)2k+2

≤ 2k+2
∑

mt∈Mt

p(mt)qt(Err(mt)|mt).

From Claim 4 and Inequality (11) we know that

qt(Err(mt)|mt) ≤
√
|Err(mt)|c · cert(Mt) ≤ c ·

√
1
ε2
· d2

|X ||H|
,

where the second inequality follows from Inequality (11) and the assumption in the claim
regarding the bound on cert(Mt). To sum up this step, Err(mt) adds only a small additive
error of 2k+2 · c ·

√
1
ε2 · d2

|X ||H| to Expression (2).
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Step 5: towards using the entropy sampler property of G′t: Recall that accord-
ing to our plan at step 1 we want to prove now that for mt /∈ Low, h /∈ Err(mt) it holds
that

∑
mj∈Mt+1

Pr(Smt,mj |mt)
β′mj

2
logγ0

β′

β′mj

is at most∑
mj

qt+1(Smt,mj |mt)
β′mj

 2
logγ0 β

′
∑

mj

qt+1(Sm
t,mj |mt)

β′mj (1 + ε′4)

for some small ε′4 ∈ (0, 1) to (implicitly) be determined in the next step. To this end we first
prove, having in mind the expression in 13, that the following inequality holds

∑i(mt)
i=1

qt+1(Sm
t,mi |mt)
β′
i

2
logγ0

β′

β′
i +

∑|Mt+1|
i=(i(mt))+1

qt+1(Sm
t,mi |mt)
β′
i

2
logγ0

β′·γ0
β′
i∑

mj

qt+1(Smt,mj |mt)
β′mj

≤ 2
logγ0 β

′
∑

mj

qt+1(Sm
t,mj |mt)

β′mj (1 + ε4) (15)

for some small ε4 ∈ (0, 1) to be determined later.
Define the function f(x) = 2logγ0

1
x and the following distribution over memories at time

t+ 1: p̄(mi) ∝ qt+1(Sm
t,mi |mt)

β′
mi

and divide both sides by 2logγ0 β
′
then Inequality (15) can be

rewritten as

∑
mi

p̄(mi)f
(
β′i ·

(
1
γ0

)Ii>i(mt)

)
≤ f

( 1
γ0

)log(1+ε4)
/
∑
mj

qt+1(Smt,mj |mt)
β′mj

 ,

where I is the indicator function. Use Jensen’s inequality with the concave function f (see
Claim 31) and get that the LHS is at most

f

∑
mi

qt+1(Smt,mi |mt)∑
mj

qt+1(Smt,mj |mt)
β′mj

·
(

1
γ0

)Ii>i(mt)


Since f is monotonically increasing (see Claim 31), to prove Inequality (15) it is enough to
show that

∑
mi

qt+1(Sm
t,mi |mt) ·

(
1
γ0

)Ii>i(mt)
≤
(

1
γ0

)log(1+ε4)

Using the inequality x/2 ≤ log(1 + x) (which follows from Fact 35 and ε4 < 1) it is enough
to prove that

∑
mi

qt+1(Sm
t,mi |mt) ·

(
1
γ0

)Ii>i(mt)
≤
(

1
γ0

)ε4/2
. (16)
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Note that by separating the LHS into two and the definition of ε′ we have that∑
mi

qt+1(Sm
t,mi |mt) ·

(
1
γ0

)Ii>i(mt)
≤ 1 +

∑
i>i(mt)

qt+1(Sm
t,mi |mt)

(
1
γ0

)
≤ 1 + ε′

(
1
γ0

)
Thus, to show that Inequality (16) holds, it suffices to show that

1 + ε′
(

1
γ0

)
≤
(

1
γ0

)ε4/2
.

Which is true if and only if

ln
(

1 + ε′
(

1
γ0

))
≤ ε4

2 ln
(

1
γ0

)
.

Using Fact 35 it is enough to show that

ε′
(

1
γ0

)
≤ ε4

2 ln
(

1
γ0

)
.

We choose ε4 = 2
√
ε′. If

√
ε′ ≤ γ0 then the inequality will hold since γ0 ≤ 1/16 < 1/e.

Step 6: Summing up: Using Expressions (8), (13), (15) (recall that ε4 = 2
√
ε′), the

assumption is the claim regarding the entropy sampler of G′t, Expression (7), and the
conclusion of step 4 we have proven that Expression (1) is bounded by

(1 +√γ0)
(

1 + ε′ + 4ε
(ε′)2

)
(1 + 2εrep)(1 + 2

√
ε′)` · |H|

|H|
+ 2k+2γ0 + 2k+2 · c ·

√
1
ε2
· d2

|X ||H|

We choose ε′ = γ2
0 (note that indeed

√
ε′ ≤ γ0) and ε = γ5

0/4. From the assumption in the
claim we know that α′√γ0 ≥ 2k+2γ0 + 2k+2 · c ·

√
16
γ10

0
· d2

|X ||H| . Hence, Expression (1) is at
most(

(1 +√γ0)
(
1 + γ2

0 + γ0
)

(1 + 2εrep)(1 + 2γ0)`+√γ0
)
· |H|
|H|
≤ (1 + 10√γ0 + 2εrep) ` · |H|

|H|

(in the RHS the constant 10 near √γ0 was chosen arbitrarily) J

4.1 Auxiliary Claims
I Claim 31. For any ε ≤ 1/2, the function f(x) = 2logε 1

x for x > 0 is monotonically
increasing and concave.

In the next claim we lower bound qt+1(S|mt) in terms of Pr(S|h) via the term |S|/|X |.

I Claim 32. Let S ⊆ X . Let h ∈ H.
1. Pr(S|h) ≤ 2|S|

|X |
2. Let mt be a memory at time t. Assume S ∩NRep(mt, εrep) = ∅ and εrep ≤ 1/2. Then
|S|
|X | ≤ (1 + 2εrep)qt+1(S|mt).

Proof. The first inequality follows from the fact that if (x, h) ∈ E (i.e., hypothesis h and
labeled example x are consistent) then Pr(x|h) = 2/|X | and if (x, h) /∈ E then Pr(x|h) = 0.
To prove the second inequality, we use the definition of NRep (see Definition 22) to deduce
that

1− εrep

|X |
|S| ≤ qt+1(S|mt)⇒ |S|

|X |
≤ 1

1− εrep qt+1(S|mt)⇒ |S|
|X |
≤ (1 + 2εrep)qt+1(S|mt),

where the last inequality is true for εrep ≤ 1/2. J
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Suppose that the labeled examples are sorted in some way and denote by S≥i all the
examples except the first i− 1 examples.

I Claim 33. If the hypotheses graph (H,X , E) is d-mixing, then for any ε, ε′ > 0 except for
a fraction of 1

ε2 · d2

|X ||H| of the hypotheses h ∈ H, for each i ≤ (1− ε′)|X |,

Pr(S≥i|h) ≤
(

1 + ε′ + 4ε
(ε′)2

)
|S≥i|
|X |

.

Proof. We will pick ε1, ε2, ε3 > 0 at the end. Divide all the labeled examples into 1/ε2
consecutive equal parts, each of size ε2|X | (without loss of gnerality the integer ε2|X | divides
|X |). Focus for now on some part S. First we would like to show that for each part S ⊆ X
most hypotheses h do not over-sample S, i.e.,

Pr(S|h) ≤ (1 + ε1) |S|
|X |

.

Denote by T ⊆ H all the hypotheses h ∈ H such that Pr(S|h) > |S|
|X | (1 + ε1). Then E(S, T ) >

|S|
|X | (1 + ε1) |X |2 |T |. From the d-mixing property we know that E(S, T ) ≤ |S||T |/2 + d

√
|S||T |.

Combining these two inequalities we get that

ε1
|S||T |

2 < d
√
|S||T | ⇒ |T | < 4d2

ε21|S|
= 4d2

ε21ε2|X |
.

Denote by Err ⊆ H all the hypotheses that over-sample at least one part, i.e., hypothesis
h /∈ Err if and only if for each of the 1/ε2 parts, S, it holds that Pr(S|h) ≤ (1+ε1) |S||X | . We can
easily deduce, using a union bound, that the fraction of this set is at most |Err||H| ≤

4d2

ε2
1ε

2
2|X ||H|

.

Let us go back to the expressions that we want to bound, namely Pr(S≥i|h) for each i.
We will show that for each h /∈ Err, and for each i, the probability

Pr(S≥i|h) ≤ (1 + ε3) |S
≥i|
|X |

. (17)

For each i denote by i∗ the largest index that is smaller than i and divides ε2|X |. We have
that Pr(x|h) ≤ 2

|X | for each labeled example x and hypothesis h, thus Pr(S≥i \S≥i∗ |h) ≤ 2ε2.
Hence, the LHS of Inequality (17) is bounded by

Pr(S≥i|h) ≤ Pr(S≥i
∗
|h) + 2ε2 ≤ (1 + ε1) |S

≥i|
|X |

+ 2ε2,

So we need to make sure that

(1 + ε1) |S
≥i|
|X |

+ 2ε2 ≤ (1 + ε3) |S
≥i|
|X |

,

which will happen only if ε1 |S
≥i|
|X | + 2ε2 ≤ ε3

|S≥i|
|X | , or equivalently

2ε2
ε3−ε1

≤ |S
≥i|
|X | (assuming

ε3 > ε1 as we will choose later). Thus, except for a fraction of 4d2

ε2
1ε

2
2|X ||H|

hypotheses h ∈ H
for each i ≤ (1− 2ε2

ε3−ε1
)|X |,

Pr(S≥i|h) ≤ (1 + ε3) |S
≥i|
|X |

.

Choose ε1 = ε′ and ε2 = 2ε
ε1

and ε3 = ε1 + 2ε2
ε1
. J

I Claim 34. For any 0 < x ≤ 1/16 it holds that 2logx(1−x) ≤ 1 +
√
x.

I Fact 35. For any x > −1 it holds that x
1+x ≤ ln(1 + x) ≤ x.
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