199 research outputs found

    Preliminary results of the Vega 1 and Vega 2 optical investigation of aerosol in the atmosphere of Venus at 30-60 KM

    Get PDF
    Aerosol concentration profiles were measured by an aerosol spectrometer above the landing sites of the Vega 1 and Vega 2 landers. Approximately the same altitude zones were found as in previous experiments: a three-layered basic cloud cover, an intermediate zone and subcloud haze. There were significant quantitative differences in the concentrations of particles, however, and especially in the spectra of their dimensions. Nightglow was found in the troposphere of Venus at a wavelength of about 1 micron. The backscatter coefficient and the extinction coefficient change very little between 32 and 63 km. Large numbers of submicron particles apparently exist in the atmosphere above the landing sites

    Spectrophotometric experiment on the Verera-11 and Venera-12 descent vehicles: Some results of the analysis of the spectrum of the daytime sky of Venus

    Get PDF
    The spectra of the daytime sky of Venus were recorded on the Venera-11 and Venera-12 descent vehicles at various altitudes above the planet's surface, within the interval of 4500 to 12,000 Angstroms. The angular distribution of the brightness of the scattered radiation was recorded and the ratio of water and carbon dioxide were studied, with respect to the cloud cover boundaries

    Results and interpretation of measurements of the light flux in the near-surface layer of the Venusian atmosphere

    Get PDF
    The characteristics of the field of radiation in the near surface layer of the atmosphere and on the surface of Venus are reported. Optical measurements made during the landing of the descent vehicles are described. The relief of the surface and the amount of dust on it are examined. The spectral relationship of the albedo of the soil and the light flux incident on the surface is discussed

    Impact of glycolysis inhibitor (2-DG) and oxidation and phosphorylation uncoupler (2,4-DNP) on brain metabolites

    Get PDF
    Deviations in brain metabolism are the result of longterm pathological processes, which finally are manifested as symptoms of Parkinson’s or Alzheimer’s diseases or multiple sclerosis and other neuropathologies, as for example diabetic neuropathy. A deficiency of available energy for brain cells under neurodegenerative diseases is either developed due to age-dependent underexpression of genes that encode glycolytic enzymes or induced due to the uncoupling of oxidation and phosphorylation that could be mediated by inflammatory cytokines. Since the activity of many enzymes is under the control of adenosine triphosphate (ATP) or cofactors, such as nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), energy deficiency can cause metabolic changes in brain tissue. Some clinical studies using proton nuclear magnetic resonance spectroscopy (1H NMR spectroscopy) revealed metabolic changes in brain tissue in patients with neurodegenerative diseases. However, data from different authors are quite contradictory, probably because of the complex genesis of metabolic disorders. In the present study, we tested the hypothesis of multidirectional changes in metabolism under the impact of the oxidation and phosphorylation uncoupler 2,4-dinitrophenol (2,4-DNP) and under the impact of 2-deoxy-Dglucose (2-DG), blocking the access of glucose to the brain cells. 1H NMR spectroscopy showed that 2-DG leads to the predominance of excitatory (glutamine + glutamate) neurotransmitters over inhibitory ones (gamma-aminobutyric acid), and 2,4 DNP causes opposite effects. The biochemical mechanisms of the observed changes require a special study, but it can be noted that the ATP deficiency caused by inhibition of glycolysis and the ATP deficiency caused by the uncouplers are accompanied by differently directed changes in the intensity of the tricarboxylic acid cycle. These changes in the intensity of the Krebs cycle are correlated with differently directed changes in the balance of the exciting and inhibitory neurotransmitters. The obtained results show that 1H NMR spectroscopy can be an effective method of differentiated lifetime assessment of the available energy deficit caused by a general suppression of energy exchange in nerve cells or oxidation and phosphorylation uncoupling

    Olfactory transport efficiency of the amorphous and crystalline manganese oxide nanoparticles

    Get PDF
    The ability to deliver particulated xenobiotics and therapeutic drugs directly from the nasal cavity to the central nervous system, bypassing the hemato-encephalic barrier, determines a high importance of investigation of factors influencing this process. It was shown that the bioavailability of solid particles is influenced by their size and surface charge. At the same time, the impact of a crystal structure (crystalline/amorphous) has been poorly investigated. In this study, using sexually mature male C57BL/6J mice, we analyzed the efficiency of the nose-to-brain transport of crystalline and amorphous manganese oxide nanoparticles. T1-weighted magnetic resonance imaging (MRI) was used to evaluate the accumulation of manganese nanoparticles in olfactory bulb (OB) and olfactory epithelium (OE). So, it has been established that amorphous particles have higher accumulation rate in OE and OB in comparison with crystalline particles after their intranasal administration. The unequal ability of amorphous and crystalline particles to overcome the mucosal layer covering the OE may be one of the possible reasons for the different nose-to-brain transport efficiency of particulated matter. Indeed, the introduction of mucolytic (dithiothreitol) 20 minutes prior to intranasal particle application did not influence the accumulation of amorphous particles in OE and OB, but enhanced the efficiency of crystalline nanoparticle entry. Data on the different intake of amorphous and crystalline nanoparticles from the nasal cavity to the brain, as well as the evidence for the key role of the mucosal layer in differentiating the penetrating power of these particles will be useful in developing approaches to assessing air pollution and optimizing the methods of inhalation therapy

    Olfactory transport efficiency of the manganese oxide nanoparticles (II) after their single or multiple intranasal administrations

    Get PDF
    In experiments with reusable inhalation of nano-sized metal oxide particles, it has been shown that there is no significant relationship between the number of presentations and the metal concentration in the olfactory bulb. This fact raises the question of a possible decrease in the efficiency of particulate capturing by the olfactory epithelium after their repeated application into the nasal cavity. In this study, we compared the effectiveness of nasal transport of paramagnetic nanoparticles after their single and multiple intranasal administration and evaluated their effects on the morphological and functional characteristics of the olfactory system. Based on the data, the accumulation of MnO-NPs in the olfactory bulb of mice was reduced after repeated intranasal application. In addition, the decrease in the efficiency of olfactory transport observed after repeated administration of MnO-NPs was partially restored by intranasal application of mucolytic (0.01 M N-acetyl-L-cysteine). In this case, the concentration of particles in the olfactory bulb was proportional to the volume of the structure, which in particular depends on the number of synaptic contacts between the mitral cell of the olfactory bulb (OB) and olfactory epithelium (OE). It should be noted that multiple intranasal injections of MnO-NPs reduce mouse OE thickness. Thus, repeated intranasal introduction of MnO-NPs reduces the efficiency of nanoparticle olfactory transport from the nasal cavity to the brain, which is combined with the increase in the viscosity of the mucosal layer and the reduction in the number of synaptic contacts between OB and OE. These results indicate the presence of the natural mechanisms of protection against the penetration of pathogens and xenobiotics into the olfactory epithelium; they also allow us to formulate practical recommendations on intranasal drugs delivery

    Brain metabolites in ISIAH and Wistar rats

    Get PDF
    Hypertension is one of the most common human diseases. This disease leads to serious disturbances such as myocardial infarction and stroke. Due to the development of nuclear magnetic resonance spectroscopy (NMRS), a decrease in neuron viability in different parts of the brain in humans with hypertension has been shown. Translation of NMRS tools to the clinic requires the accumulation of empirical data about neurometabolic changes in a strictly controlled experiment. It is particularly interesting to compare the metabolic parameters of laboratory animals with normal and high blood pressure kept in standard conditions on exactly the same diet. In this study, cortex and hypothalamus metabolites of ISIAH and Wistar male rats at the age of 8–9 weeks were examined. Cortex and hypothalamus metabolites were measured in animals under isoflurane anesthesia using proton magnetic resonance spectroscopy (1Н MRS). Processing of primary data using Partial least squares Discriminant Analysis (PLS-DA) allowed us to identify the main discriminating axis (Y1), its variations reflecting the predominance of excitatory neurometabolites (glutamine and glutamate) over inhibitory ones (GABA and glycine). In the cortex, the values of the Y1-axis were lower in ISIAH than in Wistar rats. This fact indicates a decrease in cortical excitability in hypertensive animals. By contrast, in the hypothalamus, the values of the Y1-axis were higher in ISIAH than in Wistar rats and the predominance of excitatory neurometabolites positively correlated with the level of mean blood pressure, which agrees well with the view of caudal hypothalamic activation in hypertensive animal models

    GC-based chemoprofile of lipophilic compounds in Altaian Ganoderma lucidum sample

    Get PDF
    The presented data contains information about component composition of lipophilic compounds in Ganoderma lucidum fungal body sample obtained using gas chromatography and subsequent mass spectrometry

    Study of the neuronal response to olfactory stimuli in control and LPS-stimulated mice by functional magnetic resonance imaging

    Get PDF
    Olfactory perception plays the key role in the inter­action of animals with biotic factors of the species-specific econiche. Identification of odorants informs nocturnal animals about social environment, presence of predators, or infected food. Olfactory efficiency depends on physiological conditions; in particular, odor sensitivity can be changed by infection. This work considers use of fMRI in the study of the influence of innate immunity activation on neuronal response during perception and differentiation of socially significant (2.5-dimethylpyrazine, 2-heptanon) and socially insignificant (1-hexanol and isoprene) olfactory stimuli by CD-1 mice. We stimulated innate immunity by intraperitoneal injection of bacterial lipopolysaccharide (LPS) at the dose 500 µg/kg three hours before tomography. Urethane anesthesia was used during MRI trail. Odor stimulation was done with a lab-made metering unit for supplying standard doses of volatile organic compounds. The supply of olfactory stimuli induced activation of neurons in the primary perceptual center and the centers of secondary processing of olfactory information. Olfactory stimulus type affected neuronal response rate in an olfactory bulb but did not affect response parameters in other brain regions studied. This increase in neuronal activity is likely to be of adaptive significance as a mechanism supporting olfactory sensitivity increase, which plays the key role in the identification of potential sources of infection

    Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B

    Full text link
    The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas, production materials) have been developed and validated for use in harsh radiation environments. In the test program various aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed and cures by tuning of operation parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001, Hamburg, German
    corecore