130 research outputs found
Tuchmintz v. Carmel
The Respondent petitioned the Tel Aviv-Jaffa District Court for the enforcement of the Appellant’s obligation to purchase a 3 room apartment for her, and for the appointment of a receiver to execute that obligation. The said obligation was part of a divorce agreement between the Appellant and the Respondent that was given the force of a judgment. The Appellant argued that he and the Respondent had made a parol agreement to delay the execution of the obligation. The District Court granted the Respondent’s request. This led to the appeal, which focused upon the question whether a parol agreement can alter an obligation made in a divorce agreement that was given the force of a judgment.
(1) A divorce agreement given the force of a judgment is a property agreement in the sense of the Spouses (Property Relations) Law, 5733-1973, which establishes in sec. 2(d) that “An agreement between spouses confirmed by a judgment for divorce of a religious court shall be treated as a property agreement confirmed under this section.”
(2) According to sec. 1 of the Law, not only must the property agreement itself be in writing, but “any variation of such an agreement shall be in writing”.
(3) The writing requirement, both for the property agreement itself and for changes thereto, is not merely evidentiary but substantive.
(4) In addition, to the writing requirement, sec. 2 of the Law also requires meeting the other conditions for confirmation by a judicial instance.
B. (1) In accordance with CA 490/77 Natzia v. Natzia, IsrSC 32(2) 621, Chapter One of the Spouses (Property Relations) Law, 5733-1973, also applies to spouses who married prior to the enactment of that Law who made a property agreement after its enactment.
(2) Section 1 of the Law speaks of a property agreement made between spouses, but it does not require that they also be in that same status of spouses at the time of making a change in a property agreement
Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated with Leukodystrophy with Spastic Paraparesis and Dystonia
Myelination is a complex, developmentally regulated process whereby myelin proteins and lipids are coordinately expressed by myelinating glial cells. Homozygosity mapping in nine patients with childhood onset spasticity, dystonia, cognitive dysfunction, and periventricular white matter disease revealed inactivating mutations in the FA2H gene. FA2H encodes the enzyme fatty acid 2-hydroxylase that catalyzes the 2-hydroxylation of myelin galactolipids, galactosylceramide, and its sulfated form, sulfatide. To our knowledge, this is the first identified deficiency of a lipid component of myelin and the clinical phenotype underscores the importance of the 2-hydroxylation of galactolipids for myelin maturation. In patients with autosomal-recessive unclassified leukodystrophy or complex spastic paraparesis, sequence analysis of the FA2H gene is warranted
Critical behavior of a one-dimensional monomer-dimer reaction model with lateral interactions
A monomer-dimer reaction lattice model with lateral repulsion among the same
species is studied using a mean-field analysis and Monte Carlo simulations. For
weak repulsions, the model exhibits a first-order irreversible phase transition
between two absorbing states saturated by each different species. Increasing
the repulsion, a reactive stationary state appears in addition to the saturated
states. The irreversible phase transitions from the reactive phase to any of
the saturated states are continuous and belong to the directed percolation
universality class. However, a different critical behavior is found at the
point where the directed percolation phase boundaries meet. The values of the
critical exponents calculated at the bicritical point are in good agreement
with the exponents corresponding to the parity-conserving universality class.
Since the adsorption-reaction processes does not lead to a non-trivial local
parity-conserving dynamics, this result confirms that the twofold symmetry
between absorbing states plays a relevant role in determining the universality
class. The value of the exponent , which characterizes the
fluctuations of an interface at the bicritical point, supports the
Bassler-Brown's conjecture which states that this is a new exponent in the
parity-conserving universality class.Comment: 19 pages, 22 figures, to be published in Phys. Rev
miR-10b*, a master inhibitor of the cell cycle, is down-regulated in human breast tumours
Deregulated proliferation is a hallmark of cancer cells. Here, we show that microRNA-10b* is a master regulator of breast cancer cell proliferation and is downregulated in tumoural samples versus matched peritumoural counterparts. Two canonical CpG islands (5kb) upstream from the precursor sequence are hypermethylated in the analysed breast cancer tissues. Ectopic delivery of synthetic microRNA-10b* in breast cancer cell lines or into xenograft mouse breast tumours inhibits cell proliferation and impairs tumour growth in vivo, respectively. We identified and validated in vitro and in vivo three novel target mRNAs of miR-10b* (BUB1, PLK1 and CCNA2), which play a remarkable role in cell cycle regulation and whose high expression in breast cancer patients is associated with reduced disease-free survival, relapse-free survival and metastasis-free survival when compared to patients with low expression. This also suggests that restoration of microRNA-10b* expression might have therapeutic promise
Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel
Purpose: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants.
Methods: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed.
Results: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants.
Conclusion: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance
Tumor Treating Fields (TTFields) demonstrate antiviral functions in vitro, and safety for application to COVID-19 patients in a pilot clinical study
Coronaviruses are the causative agents of several recent outbreaks, including the COVID-19 pandemic. One therapeutic approach is blocking viral binding to the host receptor. As binding largely depends on electrostatic interactions, we hypothesized possible inhibition of viral infection through application of electric fields, and tested the effectiveness of Tumor Treating Fields (TTFields), a clinically approved cancer treatment based on delivery of electric fields. In preclinical models, TTFields were found to inhibit coronavirus infection and replication, leading to lower viral secretion and higher cell survival, and to formation of progeny virions with lower infectivity, overall demonstrating antiviral activity. In a pilot clinical study (NCT04953234), TTFields therapy was safe for patients with severe COVID-19, also demonstrating preliminary effectiveness data, that correlated with higher device usage
Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS
A novel uncooled thermal sensor based on a suspended transistor, fabricated in standard CMOS-SOI process, and released by dry etching, dubbed Digital TMOS, has been developed. Using the transistor as the sensing element has advantages in terms of internal gain, low power, low-cost technology, and high temperature sensitivity. A two channel radiometer, based on the new nano-metric CMOS-SOI-NEMS Technology, enables remote temperature sensing as well as emissivity sensing of the forehead and body temperatures of people, with high accuracy and high resolution. Body temperature is an indicator of human physiological activity and health, especially in pediatrics, surgery, and general emergency departments. This was already recognized in past pandemics such as SARS, EBOLA, and Chicken Flu. Nowadays, with the spread of COVID-19, forehead temperature measurements are used widely to screen people for the illness. Measuring the temperature of the forehead using remote sensing is safe and convenient and there are a large number of available commercial instruments, but studies show that the measurements are not accurate. The surface emissivity of an object has the most significant effect on the measured temperature by IR remote sensing. This work describes the achievements towards high–performance, low-cost, low power, mobile radiometry, to rapidly screen for fever to identify victims of the coronavirus (COVID-19). The main two aspects of the innovation of this study are the use of the new thermal sensor for measurements and the extensive modeling of this sensor
- …