8,544 research outputs found

    Average output entropy for quantum channels

    Full text link
    We study the regularized average Renyi output entropy \bar{S}_{r}^{\reg} of quantum channels. This quantity gives information about the average noisiness of the channel output arising from a typical, highly entangled input state in the limit of infinite dimensions. We find a closed expression for \beta_{r}^{\reg}, a quantity which we conjecture to be equal to \Srreg. We find an explicit form for \beta_{r}^{\reg} for some entanglement-breaking channels, and also for the qubit depolarizing channel Δλ\Delta_{\lambda} as a function of the parameter λ\lambda. We prove equality of the two quantities in some cases, in particular we conclude that for Δλ\Delta_{\lambda} both are non-analytic functions of the variable λ\lambda.Comment: 32 pages, several plots and figures; positivity condition added for Theorem on entanglement breaking channels; new result for entrywise positive channel

    Laboratory simulations of astrophysical jets and solar coronal loops: new results

    Get PDF
    An experimental program underway at Caltech has produced plasmas where the shape is neither fixed by the vacuum chamber nor fixed by an external coil set, but instead is determined by self-organization. The plasma dynamics is highly reproducible and so can be studied in considerable detail even though the morphology of the plasma is both complex and time-dependent. A surprising result has been the observation that self-collimating MHD-driven plasma jets are ubiquitous and play a fundamental role in the self-organization. The jets can be considered lab-scale simulations of astrophysical jets and in addition are intimately related to solar coronal loops. The jets are driven by the combination of the axial component of the J×B force and the axial pressure gradient resulting from the non-uniform pinch force associated with the flared axial current density. Behavior is consistent with a model showing that collimation results from axial non-uniformity of the jet velocity. In particular, flow stagnation in the jet frame compresses frozen-in azimuthal magnetic flux, squeezes together toroidal magnetic field lines, thereby amplifying the embedded toroidal magnetic field, enhancing the pinch force, and hence causing collimation of the jet

    Discrete Lagrangian systems on the Virasoro group and Camassa-Holm family

    Full text link
    We show that the continuous limit of a wide natural class of the right-invariant discrete Lagrangian systems on the Virasoro group gives the family of integrable PDE's containing Camassa-Holm, Hunter-Saxton and Korteweg-de Vries equations. This family has been recently derived by Khesin and Misiolek as Euler equations on the Virasoro algebra for Hα,β1H^1_{\alpha,\beta}-metrics. Our result demonstrates a universal nature of these equations.Comment: 6 pages, no figures, AMS-LaTeX. Version 2: minor changes. Version 3: minor change

    Scattering off an oscillating target: Basic mechanisms and their impact on cross sections

    Full text link
    We investigate classical scattering off a harmonically oscillating target in two spatial dimensions. The shape of the scatterer is assumed to have a boundary which is locally convex at any point and does not support the presence of any periodic orbits in the corresponding dynamics. As a simple example we consider the scattering of a beam of non-interacting particles off a circular hard scatterer. The performed analysis is focused on experimentally accessible quantities, characterizing the system, like the differential cross sections in the outgoing angle and velocity. Despite the absence of periodic orbits and their manifolds in the dynamics, we show that the cross sections acquire rich and multiple structure when the velocity of the particles in the beam becomes of the same order of magnitude as the maximum velocity of the oscillating target. The underlying dynamical pattern is uniquely determined by the phase of the first collision between the beam particles and the scatterer and possesses a universal profile, dictated by the manifolds of the parabolic orbits, which can be understood both qualitatively as well as quantitatively in terms of scattering off a hard wall. We discuss also the inverse problem concerning the possibility to extract properties of the oscillating target from the differential cross sections.Comment: 18 page

    Integrability and Ergodicity of Classical Billiards in a Magnetic Field

    Full text link
    We consider classical billiards in plane, connected, but not necessarily bounded domains. The charged billiard ball is immersed in a homogeneous, stationary magnetic field perpendicular to the plane. The part of dynamics which is not trivially integrable can be described by a "bouncing map". We compute a general expression for the Jacobian matrix of this map, which allows to determine stability and bifurcation values of specific periodic orbits. In some cases, the bouncing map is a twist map and admits a generating function which is useful to do perturbative calculations and to classify periodic orbits. We prove that billiards in convex domains with sufficiently smooth boundaries possess invariant tori corresponding to skipping trajectories. Moreover, in strong field we construct adiabatic invariants over exponentially large times. On the other hand, we present evidence that the billiard in a square is ergodic for some large enough values of the magnetic field. A numerical study reveals that the scattering on two circles is essentially chaotic.Comment: Explanations added in Section 5, Section 6 enlarged, small errors corrected; Large figures have been bitmapped; 40 pages LaTeX, 15 figures, uuencoded tar.gz. file. To appear in J. Stat. Phys. 8

    New Algorithm for Mixmaster Dynamics

    Get PDF
    We present a new numerical algorithm for evolving the Mixmaster spacetimes. By using symplectic integration techniques to take advantage of the exact Taub solution for the scattering between asymptotic Kasner regimes, we evolve these spacetimes with higher accuracy using much larger time steps than previously possible. The longer Mixmaster evolution thus allowed enables detailed comparison with the Belinskii, Khalatnikov, Lifshitz (BKL) approximate Mixmaster dynamics. In particular, we show that errors between the BKL prediction and the measured parameters early in the simulation can be eliminated by relaxing the BKL assumptions to yield an improved map. The improved map has different predictions for vacuum Bianchi Type IX and magnetic Bianchi Type VI0_0 Mixmaster models which are clearly matched in the simulation.Comment: 12 pages, Revtex, 4 eps figure

    The electronic structure of the high-symmetry perovskite iridate Ba2IrO4

    Get PDF
    We report angle-resolved photoemission (ARPES) measurements, density functional and model tight-binding calculations on Ba2_2IrO4_4 (Ba-214), an antiferromagnetic (TN=230T_N=230 K) insulator. Ba-214 does not exhibit the rotational distortion of the IrO6_6 octahedra that is present in its sister compound Sr2_2IrO4_4 (Sr-214), and is therefore an attractive reference material to study the electronic structure of layered iridates. We find that the band structures of Ba-214 and Sr-214 are qualitatively similar, hinting at the predominant role of the spin-orbit interaction in these materials. Temperature-dependent ARPES data show that the energy gap persists well above TNT_N, and favour a Mott over a Slater scenario for this compound.Comment: 13 pages, 9 figure

    Explicit Integration of the Full Symmetric Toda Hierarchy and the Sorting Property

    Full text link
    We give an explicit formula for the solution to the initial value problem of the full symmetric Toda hierarchy. The formula is obtained by the orthogonalization procedure of Szeg\"{o}, and is also interpreted as a consequence of the QR factorization method of Symes \cite{symes}. The sorting property of the dynamics is also proved for the case of a generic symmetric matrix in the sense described in the text, and generalizations of tridiagonal formulae are given for the case of matrices with 2M+12M+1 nonzero diagonals.Comment: 13 pages, Latex

    Integrability and chaos: the classical uncertainty

    Full text link
    In recent years there has been a considerable increase in the publishing of textbooks and monographs covering what was formerly known as random or irregular deterministic motion, now named by the more fashionable term of deterministic chaos. There is still substantial interest in a matter that is included in many graduate and even undergraduate courses on classical mechanics. Based on the Hamiltonian formalism, the main objective of this article is to provide, from the physicist's point of view, an overall and intuitive review of this broad subject (with some emphasis on the KAM theorem and the stability of planetary motions) which may be useful to both students and instructors.Comment: 24 pages, 10 figure

    Derivative pricing under the possibility of long memory in the supOU stochastic volatility model

    Get PDF
    We consider the supOU stochastic volatility model which is able to exhibit long-range dependence. For this model we give conditions for the discounted stock price to be a martingale, calculate the characteristic function, give a strip where it is analytic and discuss the use of Fourier pricing techniques. Finally, we present a concrete specification with polynomially decaying autocorrelations and calibrate it to observed market prices of plain vanilla options
    corecore