5,661 research outputs found

    Invariants of the Haldane-Shastry SU(N)SU(N) Chain

    Full text link
    Using a formalism developed by Polychronakos, we explicitly construct a set of invariants of the motion for the Haldane-Shastry SU(N)SU(N) chain.Comment: 11 pages, UVA-92-0

    In Vivo Retinal Pigment Epithelium Imaging using Transscleral Optical Imaging in Healthy Eyes.

    Get PDF
    To image healthy retinal pigment epithelial (RPE) cells in vivo using Transscleral OPtical Imaging (TOPI) and to analyze statistics of RPE cell features as a function of age, axial length (AL), and eccentricity. Single-center, exploratory, prospective, and descriptive clinical study. Forty-nine eyes (AL: 24.03 ± 0.93 mm; range: 21.9-26.7 mm) from 29 participants aged 21 to 70 years (37.1 ± 13.3 years; 19 men, 10 women). Retinal images, including fundus photography and spectral-domain OCT, AL, and refractive error measurements were collected at baseline. For each eye, 6 high-resolution RPE images were acquired using TOPI at different locations, one of them being imaged 5 times to evaluate the repeatability of the method. Follow-up ophthalmic examination was repeated 1 to 3 weeks after TOPI to assess safety. Retinal pigment epithelial images were analyzed with a custom automated software to extract cell parameters. Statistical analysis of the selected high-contrast images included calculation of coefficient of variation (CoV) for each feature at each repetition and Spearman and Mann-Whitney tests to investigate the relationship between cell features and eye and subject characteristics. Retinal pigment epithelial cell features: density, area, center-to-center spacing, number of neighbors, circularity, elongation, solidity, and border distance CoV. Macular RPE cell features were extracted from TOPI images at an eccentricity of 1.6° to 16.3° from the fovea. For each feature, the mean CoV was < 4%. Spearman test showed correlation within RPE cell features. In the perifovea, the region in which images were selected for all participants, longer AL significantly correlated with decreased RPE cell density (R Spearman, Rs = -0.746; P < 0.0001) and increased cell area (Rs = 0.668; P < 0.0001), without morphologic changes. Aging was also significantly correlated with decreased RPE density (Rs = -0.391; P = 0.036) and increased cell area (Rs = 0.454; P = 0.013). Lower circular, less symmetric, more elongated, and larger cells were observed in those > 50 years. The TOPI technology imaged RPE cells in vivo with a repeatability of < 4% for the CoV and was used to analyze the influence of physiologic factors on RPE cell morphometry in the perifovea of healthy volunteers. Proprietary or commercial disclosure may be found after the references

    The Fermi-Pasta-Ulam problem: 50 years of progress

    Full text link
    A brief review of the Fermi-Pasta-Ulam (FPU) paradox is given, together with its suggested resolutions and its relation to other physical problems. We focus on the ideas and concepts that have become the core of modern nonlinear mechanics, in their historical perspective. Starting from the first numerical results of FPU, both theoretical and numerical findings are discussed in close connection with the problems of ergodicity, integrability, chaos and stability of motion. New directions related to the Bose-Einstein condensation and quantum systems of interacting Bose-particles are also considered.Comment: 48 pages, no figures, corrected and accepted for publicatio

    Hysteresis of Electronic Transport in Graphene Transistors

    Full text link
    Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection and chemically driven applications.Comment: 13 pages, 6 Figure

    Regular and chaotic interactions of two BPS dyons at low energy

    Full text link
    We identify and analyze quasiperiodic and chaotic motion patterns in the time evolution of a classical, non-Abelian Bogomol'nyi-Prasad-Sommerfield (BPS) dyon pair at low energies. This system is amenable to the geodesic approximation which restricts the underlying SU(2) Yang-Mills-Higgs dynamics to an eight-dimensional phase space. We numerically calculate a representative set of long-time solutions to the corresponding Hamilton equations and analyze quasiperiodic and chaotic phase space regions by means of Poincare surfaces of section, high-resolution power spectra and Lyapunov exponents. Our results provide clear evidence for both quasiperiodic and chaotic behavior and characterize it quantitatively. Indications for intermittency are also discussed.Comment: 22 pages, 6 figures (v2 contains a few additional references, a new paragraph on intermittency and minor stylistic corrections to agree with the published version

    EU Agro Biogas Project

    Get PDF
    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and universities are cooperating with key industry partners in order to work towards a sustainable Europe. Fourteen partners from eight European countries are involved. EU-AGRO-BIOGAS aims at the development and optimisation of the entire value chain – to range from the production of raw materials, the production and refining of biogas to the utilisation of heat and electricity

    On-chip beam rotators, polarizers and adiabatic mode converters through low-loss waveguides with variable cross-sections

    Get PDF
    Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss, in order to provide more degrees of freedom in manipulating propagating light. Here, we report on a new optical-fibres-compatible glass waveguide by femtosecond laser writing, namely spherical phase induced multi-core waveguide (SPIM-WG), which addresses this challenging task with three dimensional on-chip light control. Precise deformation of cross-sections is achievable along the waveguide, with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions. We observed that these waveguides have high refractive index contrast of 0.017, low propagation loss of 0.14 dB/cm, and very low coupling loss of 0.19 dB coupled from a single mode fibre. SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles, or manipulate polarization state of propagating light for target wavelengths. We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric non-uniform modes; examples include circular, elliptical modes and asymmetric modes from ppKTP waveguides which are generally applied in frequency conversion and quantum light sources. Created inside optical glass, these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths. The compatibility with optical fibre also paves the way toward packaged photonic integrated circuitry, which usually needs input and output fibre connections

    Width Distributions and the Upper Critical Dimension of KPZ Interfaces

    Full text link
    Simulations of restricted solid-on-solid growth models are used to build the width-distributions of d=2-5 dimensional KPZ interfaces. We find that the universal scaling function associated with the steady-state width-distribution changes smoothly as d is increased, thus strongly suggesting that d=4 is not an upper critical dimension for the KPZ equation. The dimensional trends observed in the scaling functions indicate that the upper critical dimension is at infinity.Comment: 4 pages, 4 postscript figures, RevTe
    corecore