20,920 research outputs found

    Two-photon imaging through a multimode fiber

    Full text link
    In this work we demonstrate 3D imaging using two-photon excitation through a 20 cm long multimode optical fiber (MMF) of 350 micrometers diameter. The imaging principle is similar to single photon fluorescence through a MMF, except that a focused femtosecond pulse is delivered and scanned over the sample. In our approach, focusing and scanning through the fiber is accomplished by digital phase conjugation using mode selection by time gating with an ultra-fast reference pulse. The excited two-photon emission is collected through the same fiber. We demonstrate depth sectioning by scanning the focused pulse in a 3D volume over a sample consisting of fluorescent beads suspended in a polymer. The achieved resolution is 1 micrometer laterally and 15 micrometers axially. Scanning is performed over an 80x80 micrometers field of view. To our knowledge, this is the first demonstration of high-resolution three-dimensional imaging using two-photon fluorescence through a multimode fiber

    Representing model inadequacy: A stochastic operator approach

    Full text link
    Mathematical models of physical systems are subject to many uncertainties such as measurement errors and uncertain initial and boundary conditions. After accounting for these uncertainties, it is often revealed that discrepancies between the model output and the observations remain; if so, the model is said to be inadequate. In practice, the inadequate model may be the best that is available or tractable, and so despite its inadequacy the model may be used to make predictions of unobserved quantities. In this case, a representation of the inadequacy is necessary, so the impact of the observed discrepancy can be determined. We investigate this problem in the context of chemical kinetics and propose a new technique to account for model inadequacy that is both probabilistic and physically meaningful. A stochastic inadequacy operator S\mathcal{S} is introduced which is embedded in the ODEs describing the evolution of chemical species concentrations and which respects certain physical constraints such as conservation laws. The parameters of S\mathcal{S} are governed by probability distributions, which in turn are characterized by a set of hyperparameters. The model parameters and hyperparameters are calibrated using high-dimensional hierarchical Bayesian inference. We apply the method to a typical problem in chemical kinetics---the reaction mechanism of hydrogen combustion

    Beyond Vibrationally Mediated Electron Transfer: Coherent Phenomena Induced by Ultrafast Charge Separation

    Get PDF
    Wave packet propagation succeeding electron transfer (ET) from alizarin dye molecules into the nanocrystalline TiO2 semiconductor has been studied by ultrafast transient absorption spectroscopy. Due to the ultrafast time scale of the ET reaction of about 6 fs the system shows substantial differences to molecular ET systems. We show that the ET process is not mediated by molecular vibrations and therefore classical ET theories lose their applicability. Here the ET reaction itself prepares a vibrational wave packet and not the electromagnetic excitation by the laser pulse. Furthermore, the generation of phonons during polaron formation in the TiO2 lattice is observed in real time for this system. The presented investigations enable an unambiguous assignment of the involved photoinduced mechanisms and can contribute to a corresponding extension of molecular ET theories to ultrafast ET systems like alizarin/TiO2.Comment: This work was supported by the German Research Foundation (DFG) (Hu 1006/6-1, WA 1850/6-1) and European Union projects FDML-Raman (FP7 ERC StG, contract no. 259158) and ENCOMOLE-2i (Horizon 2020, ERC CoG no. 646669

    Ultrafast photoinduced electron transfer in coumarin 343 sensitized TiO2-colloidal solution

    Get PDF
    Photoinduced electron transfer from organic dye molecules to semiconductor nanoparticles is the first and most important reaction step for the mechanism in the so called “wet solar cells” [1]. The time scale between the photoexcitation of the dye and the electron injection into the conduction band of the semiconductor colloid varies from a few tens of femtoseconds to nanoseconds, depending on the specific electron transfer parameters of the system, e.g., electronic coupling or free energy values of donor and acceptor molecules [2–10]. We show that visible pump/ white light probe is a very efficient tool to investigate the electron injection reaction allowing to observe simultaneously the relaxation of the excited dye, the injection process of the electron, the cooling of the injected electron and the charge recombination reaction

    On the approach to equilibrium of an Hamiltonian chain of anharmonic oscillators

    Full text link
    In this note we study the approach to equilibrium of a chain of anharmonic oscillators. We find indications that a sufficiently large system always relaxes to the usual equilibrium distribution. There is no sign of an ergodicity threshold. The time however to arrive to equilibrium diverges when g0g \to 0, gg being the anharmonicity.Comment: 8 pages, 5 figure

    A versatile plasma technique to improve plastic materials against gas and water-vapour permeation

    Get PDF
    Plasma-enhanced chemical deposition processes have been studied by comparing the performance of flexible diffusion barrier layers on plastic films produced in the same reactor. Under similar experimental conditions, a higher deposition rate is achieved by microwave discharges than by bipolar, pulsed d.c. magnetron sputtering processes. However, with both discharge modes, dense hydrocarbon coatings were produced, exhibiting a barrier improvement factor up to 120 and a flexibility ranging from 1.1%-8.8% before formation of microcracks started to dominate permeation characteristics. The density of the coatings is 1.0-1.6 g cm−3 and their hydrogen content varies from 23%-33

    Temporal order processing of syllables in the left parietal lobe

    Get PDF
    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere
    corecore