293 research outputs found
Impact of temperature and technology on biochar properties from different agricultural residues
Please click Additional Files below to see the full abstrac
Monitoring Cell Death in Regorafenib-Treated Experimental Colon Carcinomas Using Annexin-Based Optical Fluorescence Imaging Validated by Perfusion MRI
Objective To investigate annexin-based optical fluorescence imaging (OI) for monitoring regorafenib-induced early cell death in experimental colon carcinomas in rats, validated by perfusion MRI and multiparametric immunohistochemistry. Materials and Methods Subcutaneous human colon carcinomas (HT-29) in athymic rats (n = 16) were imaged before and after a one-week therapy with regorafenib (n = 8) or placebo (n = 8) using annexin-based OI and perfusion MRI at 3 Tesla. Optical signal-to-noise ratio (SNR) and MRI tumor perfusion parameters (plasma flow PF, mL/100mL/min;plasma volume PV,%) were assessed. On day 7, tumors underwent immunohistochemical analysis for tumor cell apoptosis (TUNEL),proliferation (Ki-67),and microvascular density (CD31). Results Apoptosis-targeted OI demonstrated a tumor-specific probe accumulation with a significant increase of tumor SNR under therapy (mean Delta +7.78 +/- 2.95, control: -0.80 +/- 2.48, p = 0.021). MRI detected a significant reduction of tumor perfusion in the therapy group (mean Delta PF -8.17 +/- 2.32 mL/100 mL/min, control -0.11 +/- 3.36 mL/100 mL/min, p = 0.036). Immunohistochemistry showed significantly more apoptosis (TUNEL;11392 +/- 1486 vs. 2921 +/- 334, p = 0.001),significantly less proliferation (Ki-67;1754 +/- 184 vs. 2883 +/- 323, p = 0.012),and significantly lower microvascular density (CD31;107 +/- 10 vs. 182 +/- 22, p = 0.006) in the therapy group. Conclusions Annexin-based OI allowed for the non-invasive monitoring of regorafenib-induced early cell death in experimental colon carcinomas, validated by perfusion MRI and multiparametric immunohistochemistry
Cis-epistasis at the LPA locus and risk of cardiovascular diseases
AIMS Coronary artery disease (CAD) has a strong genetic predisposition. However, despite substantial discoveries made by genome-wide association studies (GWAS), a large proportion of heritability awaits identification. Non-additive genetic-effects might be responsible for part of the unaccounted genetic variance. Here we attempted a proof-of-concept study to identify non-additive genetic effects, namely epistatic interactions, associated with CAD. METHODS AND RESULTS We tested for epistatic interactions in ten CAD case-control studies and UK Biobank with focus on 8,068 SNPs at 56 loci with known associations with CAD risk. We identified a SNP pair located in cis at the LPA locus, rs1800769 and rs9458001, to be jointly associated with risk for CAD (odds ratio OR=1.37, p = 1.07 10-11), peripheral arterial disease (OR = 1.22, p = 2.32 10-4), aortic stenosis (OR = 1.47, p = 6.95 10-7), hepatic lipoprotein(a) (Lp(a)) transcript levels (beta = 0.39, p = 1.41 10-8), and Lp(a) serum levels (beta = 0.58, p = 8.7 10-32), while individual SNPs displayed no association. Further exploration of the LPA locus revealed a strong dependency of these associations on a rare variant, rs140570886, that was previously associated with Lp(a) levels. We confirmed increased CAD risk for heterozygous (relative OR = 1.46, p = 9.97 10-32) and individuals homozygous for the minor allele (relative OR = 1.77, p = 0.09) of rs140570886. Using forward model selection, we also show that epistatic interactions between rs140570886, rs9458001, and rs1800769 modulate the effects of the rs140570886 risk allele. CONCLUSIONS These results demonstrate the feasibility of a large-scale knowledge-based epistasis scan and provide rare evidence of an epistatic interaction in a complex human disease. We were directed to a variant (rs140570886) influencing risk through additive genetic as well as epistatic effects. In summary, this study provides deeper insights into the genetic architecture of a locus important for cardiovascular diseases. TRANSLATIONAL PERSPECTIVE Genetic variants identified by GWAS studies explain about a quarter of the heritability of coronary artery disease by additive genetic effects. Our study demonstrates that non-additive effects contribute to the genetic architecture of the disease as well and identifies complex interaction patterns at the LPA locus, which affect LPA expression, Lp(a) plasma levels and risk of atherosclerosis. This proof-of-concept study encourages systematic searches for epistatic interactions in further studies to shed new light on the aetiology of the disease
Benefit of second-line therapy for advanced esophageal squamous cell carcinoma: a tri-center propensity score analysis
BACKGROUND: The level of evidence for palliative second-line therapy in advanced esophageal squamous cell carcinoma (aESCC) is limited. This is the first study that reports efficacy data comparing second-line therapy + active symptom control (ASC) versus ASC alone in aESCC. METHODS: We conducted a tri-center retrospective cohort study (n = 166) including patients with aESCC who had experienced disease progression on palliative first-line therapy. A propensity score model using inverse probability of treatment weighting (IPTW) was implemented for comparative efficacy analysis of overall survival (OS) in patients with second-line + ASC (n = 92, 55%) versus ASC alone (n = 74, 45%). RESULTS: The most frequent second-line regimens used were docetaxel (36%) and paclitaxel (18%). In unadjusted primary endpoint analysis, second-line + ASC was associated with significantly longer OS compared with ASC alone [hazard ratio (HR) = 0.49, 95% confidence interval (CI): 0.35–0.69, p < 0.0001]. However, patients in the second-line + ASC group were characterized by more favorable baseline features including a better Eastern Cooperative Oncology Group (ECOG) performance status, a longer first-line treatment duration and lower C-reactive protein levels. After rigorous adjusting for baseline confounders by re-weighting the data with the IPTW the favorable association between second-line and longer OS weakened but prevailed. The median OS was 6.1 months in the second-line + ASC group and 3.2 months in the ASC group, respectively (IPTW-adjusted HR = 0.40, 95% CI: 0.24–0.69, p = 0.001). Importantly, the benefit of second-line was consistent across several clinical subgroups, including patients with ECOG performance status ⩾1 and age ⩾65 years. The most common grade 3 or 4 adverse events associated with palliative second-line therapy were hematological toxicities. CONCLUSION: This real-world study supports the concept that systemic second-line therapy prolongs survival in patients with aESCC
Correlation of Perfusion MRI and F-18-FDG PET Imaging Biomarkers for Monitoring Regorafenib Therapy in Experimental Colon Carcinomas with Immunohistochemical Validation
Objectives To investigate a multimodal, multiparametric perfusion MRI/F-18-fluoro-deoxyglucose (F-18-FDG)-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 17 (n = 10 therapy group;n = 7 control group) female athymic nude rats (Hsd: RH-Foxn1(mu)). Animals were imaged at baseline and after a one-week daily treatment protocol with regorafenib (10 mg/kg bodyweight) using a multimodal, multiparametric perfusion MRI/F-18-FDG-PET imaging protocol. In perfusion MRI, quantitative parameters of plasma flow (PF, mL/100 mL/min), plasma volume (PV,%) and endothelial permeability-surface area product (PS, mL/100 mL/min) were calculated. In F-18-FDG-PET, tumor-to-background-ratio (TTB) was calculated. Perfusion MRI parameters were correlated with TTB and immunohistochemical assessments of tumor microvascular density (CD-31) and cell proliferation (Ki-67). Results Regorafenib significantly (p<0.01) suppressed PF (81.1 +/- 7.5 to 50.6 +/- 16.0 mL/100mL/min), PV (12.1 +/- 3.6 to 7.5 +/- 1.6%) and PS (13.6 +/- 3.2 to 7.9 +/- 2.3 mL/100mL/min) as well as TTB (3.4 +/- 0.6 to 1.9 +/- 1.1) between baseline and day 7. Immunohistochemistry revealed significantly (p<0.03) lower tumor microvascular density (CD-31, 7.0 +/- 2.4 vs. 16.1 +/- 5.9) and tumor cell proliferation (Ki-67, 434.0 +/- 62.9 vs. 663.0 +/- 98.3) in the therapy group. Perfusion MRI parameters Delta PF, Delta PV and Delta PS showed strong and significant (r = 0.67-0.78;p<0.01) correlations to the PET parameter Delta TTB and significant correlations (r = 0.57-0.67;p<0.03) to immunohistochemical Ki-67 as well as to CD-31-stainings (r = 0.49-0.55;p<0.05). Conclusions A multimodal, multiparametric perfusion MRI/PET imaging protocol allowed for non-invasive monitoring of regorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant correlations between perfusion MRI parameters and F-18-FDG-PET validated by immunohistochemistry
Competence of radiologists in cardiac CT and MR imaging in Europe:insights from the ESCR Registry
Rationale: To provide an overview of the current status of cardiac multimodality imaging practices in Europe and radiologist involvement using data from the European Society of Cardiovascular Radiology (ESCR) MRCT-registry. Materials and methods: Numbers on cardiac CT and MRI examinations were extracted from the MRCT-registry of the ESCR, entered between January 2011 and October 2023 (n = 432,265). Data collection included the total/annual numbers of examinations, indications, complications, and reporting habits. Results: Thirty-two countries contributed to the MRCT-registry, including 29 European countries. Between 2011 and 2022, there was a 4.5-fold increase in annually submitted CT examinations, from 3368 to 15,267, and a 3.8-fold increase in MRI examinations, from 3445 to 13,183. The main indications for cardiac CT were suspected coronary artery disease (CAD) (59%) and transcatheter aortic valve replacement planning (21%). The number of patients with intermediate pretest probability who underwent CT for suspected CAD showed an increase from 61% in 2012 to 82% in 2022. The main MRI indications were suspected myocarditis (26%), CAD (21%), and suspected cardiomyopathy (19%). Adverse event rates were very low for CT (0.3%) and MRI (0.7%) examinations. Reporting of CT and MRI examinations was performed mainly by radiologists (respectively 76% and 71%) and, to a lesser degree, in consensus with non-radiologists (19% and 27%, respectively). The remaining examinations (4.9% CT and 1.7% MRI) were reported by non-radiological specialties or in separate readings of radiologists and non-radiologists. Conclusions: Real-life data on cardiac imaging in Europe using the largest available MRCT-registry demonstrate a considerable increase in examinations over the past years, the vast majority of which are read by radiologists. These findings indicate that radiologists contribute to meeting the increasing demands of competent and effective care in cardiac imaging to a relevant extent. Clinical relevance statement: The number of cardiac CT and MRI examinations has risen over the past years, and radiologists read the vast majority of these studies as recorded in the MRCT-registry. </p
cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells
It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node. The involvement of cAMP-dependent regulation of HCN4 in the chronotropic heart rate response is a matter of debate. Here the authors use a knockin mouse model expressing cAMP-insensitive HCN4 channels to discover an inhibitory nonfiring cell pool in the sinoatrial node and a tonic and mutual interaction between firing and nonfiring pacemaker cells that is controlled by cAMP-dependent regulation of HCN4, with implications in chronotropic heart rate responses
cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells
It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node
- …