1,059 research outputs found

    The Parameterized Complexity of Domination-type Problems and Application to Linear Codes

    Full text link
    We study the parameterized complexity of domination-type problems. (sigma,rho)-domination is a general and unifying framework introduced by Telle: a set D of vertices of a graph G is (sigma,rho)-dominating if for any v in D, |N(v)\cap D| in sigma and for any $v\notin D, |N(v)\cap D| in rho. We mainly show that for any sigma and rho the problem of (sigma,rho)-domination is W[2] when parameterized by the size of the dominating set. This general statement is optimal in the sense that several particular instances of (sigma,rho)-domination are W[2]-complete (e.g. Dominating Set). We also prove that (sigma,rho)-domination is W[2] for the dual parameterization, i.e. when parameterized by the size of the dominated set. We extend this result to a class of domination-type problems which do not fall into the (sigma,rho)-domination framework, including Connected Dominating Set. We also consider problems of coding theory which are related to domination-type problems with parity constraints. In particular, we prove that the problem of the minimal distance of a linear code over Fq is W[2] for both standard and dual parameterizations, and W[1]-hard for the dual parameterization. To prove W[2]-membership of the domination-type problems we extend the Turing-way to parameterized complexity by introducing a new kind of non deterministic Turing machine with the ability to perform `blind' transitions, i.e. transitions which do not depend on the content of the tapes. We prove that the corresponding problem Short Blind Multi-Tape Non-Deterministic Turing Machine is W[2]-complete. We believe that this new machine can be used to prove W[2]-membership of other problems, not necessarily related to dominationComment: 19 pages, 2 figure

    Neumann and Neumann-Rosochatius integrable systems from membranes on AdS_4xS^7

    Full text link
    It is known that large class of classical string solutions in the type IIB AdS_5xS^5 background is related to the Neumann and Neumann-Rosochatius integrable systems, including spiky strings and giant magnons. It is also interesting if these integrable systems can be associated with some membrane configurations in M-theory. We show here that this is indeed the case by presenting explicitly several types of membrane embedding in AdS_4xS^7 with the searched properties.Comment: LaTeX, 17 pages, no figures;v2: comments and citations added;v3: 20 pages, new subsection, explanations, comments and references added; v4: some typos fixed, to appear in JHE

    A novel realization of the Calogero-Moser scattering states as coherent states

    Full text link
    A novel realization is provided for the scattering states of the NN-particle Calogero-Moser Hamiltonian. They are explicitly shown to be the coherent states of the singular oscillators of the Calogero-Sutherland model. Our algebraic treatment is straightforwardly extendable to a large number of few and many-body interacting systems in one and higher dimensions.Comment: 9 pages, REVTe

    Stability of axial orbits in galactic potentials

    Full text link
    We investigate the dynamics in a galactic potential with two reflection symmetries. The phase-space structure of the real system is approximated with a resonant detuned normal form constructed with the method based on the Lie transform. Attention is focused on the stability properties of the axial periodic orbits that play an important role in galactic models. Using energy and ellipticity as parameters, we find analytical expressions of bifurcations and compare them with numerical results available in the literature.Comment: 20 pages, accepted for publication on Celestial Mechanics and Dynamical Astronom

    Spiky strings and giant magnons on S5

    Get PDF
    Recently, classical solutions for strings moving in AdS5 x S5 have played an important role in understanding the AdS/CFT correspondence. A large set of them were shown to follow from an ansatz that reduces the solution of the string equations of motion to the study of a well-known integrable 1-d system known as the Neumann-Rosochatius (NR) system. However, other simple solutions such as spiky strings or giant magnons in S5 were not included in the NR ansatz. We show that, when considered in the conformal gauge, these solutions can be also accomodated by a version of the NR-system. This allows us to describe in detail a giant magnon solution with two additional angular momenta and show that it can be interpreted as a superposition of two magnons moving with the same speed. In addition, we consider the spin chain side and describe the corresponding state as that of two bound states in the infinite SU(3) spin chain. We construct the Bethe ansatz wave function for such bound state.Comment: 33 pages, LaTeX, 2 figures. v2: minor corrections, v3: minor corrections, figures enlarge

    Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2.

    Get PDF
    The lymphatic system maintains tissue fluid balance, and dysfunction of lymphatic vessels and valves causes human lymphedema syndromes. Yet, our knowledge of the molecular mechanisms underlying lymphatic vessel development is still limited. Here, we show that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of lymphatic vessel development. Endothelial-specific Cdk5 knockdown causes congenital lymphatic dysfunction and lymphedema due to defective lymphatic vessel patterning and valve formation. We identify the transcription factor Foxc2 as a key substrate of Cdk5 in the lymphatic vasculature, mechanistically linking Cdk5 to lymphatic development and valve morphogenesis. Collectively, our findings show that Cdk5-Foxc2 interaction represents a critical regulator of lymphatic vessel development and the transcriptional network underlying lymphatic vascular remodeling

    Randomised controlled trial for evaluation of fitness programme for patients with chronic low back pain

    Get PDF
    Objective: To evaluate a progressive fitness programme for patients with chronic low back pain.Design: Single blind randomised controlled trial. Assessments were carried out before and after treatment by an observer blinded to the study and included a battery of validated measures. All patients were followed up by postal questionnaire six months after treatment.Setting: Physiotherapy department of orthopaedic hospital.Subjects: 81 patients with chronic low back pain referred from orthopaedic consultants for physiotherapy. The patients were randomly allocated to a fitness programme or control group.Intervention: Both groups were taught specific exercises to carry out at home and referred to a back-school for education in back care. Patients allocated to the fitness class attended eight exercise classes over four weeks in addition to the home programme and backschool.Results: Significant differences between the groups were shown in the changes before and after treatment in scores on the Oswestry low back pain disability index (

    Double-helix Wilson loops: case of two angular momenta

    Full text link
    Recently, Wilson loops with the shape of a double helix have played an important role in studying large spin operators in gauge theories. They correspond to a quark and an anti-quark moving in circles on an S3 (and therefore each of them describes a helix in RxS3). In this paper we consider the case where the particles have two angular momenta on the S3. The string solution corresponding to such Wilson loop can be found using the relation to the Neumann-Rosochatius system allowing the computation of the energy and angular momenta of the configuration. The particular case of only one angular momentum is also considered. It can be thought as an analytic continuation of the rotating strings which are dual to operators in the SL(2) sector of N=4 SYM.Comment: 30 pages, 2 figures, LaTeX. v2: Small corrections, reference adde

    Euler-Calogero-Moser system from SU(2) Yang-Mills theory

    Get PDF
    The relation between SU(2) Yang-Mills mechanics, originated from the 4-dimensional SU(2) Yang-Mills theory under the supposition of spatial homogeneity of the gauge fields, and the Euler-Calogero-Moser model is discussed in the framework of Hamiltonian reduction. Two kinds of reductions of the degrees of freedom are considered: due to the gauge invariance and due to the discrete symmetry. In the former case, it is shown that after elimination of the gauge degrees of freedom from the SU(2) Yang-Mills mechanics the resulting unconstrained system represents the ID_3 Euler-Calogero-Moser model with an external fourth-order potential. Whereas in the latter, the IA_6 Euler-Calogero-Moser model embedded in an external potential is derived whose projection onto the invariant submanifold through the discrete symmetry coincides again with the SU(2) Yang-Mills mechanics. Based on this connection, the equations of motion of the SU(2) Yang-Mills mechanics in the limit of the zero coupling constant are presented in the Lax form.Comment: Revtex, 14 pages, no figures. Abstract changed, strata analysis have been included, typos corrected, references adde
    corecore