885 research outputs found
Simulating coronal condensation dynamics in 3D
We present numerical simulations in 3D settings where coronal rain phenomena
take place in a magnetic configuration of a quadrupolar arcade system. Our
simulation is a magnetohydrodynamic simulation including anisotropic thermal
conduction, optically thin radiative losses, and parametrised heating as main
thermodynamical features to construct a realistic arcade configuration from
chromospheric to coronal heights. The plasma evaporation from chromospheric and
transition region heights eventually causes localised runaway condensation
events and we witness the formation of plasma blobs due to thermal instability,
that evolve dynamically in the heated arcade part and move gradually downwards
due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case
there is no large scale prominence formation observed, but a continuous coronal
rain develops which shows clear indications of Rayleigh-Taylor or interchange
instability, that causes the denser plasma located above the transition region
to fall down, as the system moves towards a more stable state. Linear stability
analysis is used in the non-linear regime for gaining insight and giving a
prediction of the system's evolution. After the plasma blobs descend through
interchange, they follow the magnetic field topology more closely in the lower
coronal regions, where they are guided by the magnetic dips.Comment: 47 pages, 59 figure
Recommended from our members
Systematic comparison of BIC-based speaker segmentation systems
Unsupervised speaker change detection is addressed in this paper. Three speaker segmentation systems are examined. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic fusion scheme, and applies the Bayesian Information Criterion (BIC). The second system consists of three modules. In the first module, a second-order statistic-measure is extracted; the Euclidean distance and the T2 Hotelling statistic are applied sequentially in the second module; and BIC is utilized in the third module. The third system, first uses a metric-based approach, in order to detect potential speaker change points, and then the BIC criterion is applied to validate the previously detected change points. Experiments are carried out on a dataset, which is created by concatenating speakers from the TIMIT database. A systematic performance comparison among the three systems is carried out by means of one-way ANOVA method and post hoc Tukey’s method
A framework for dialogue detection in movies
In this paper, we investigate a novel framework for dialogue detection that is based on indicator functions. An indicator function defines that a particular actor is present at each time instant. Two dialogue detection rules are developed and assessed. The first rule relies on the value of the cross-correlation function at zero time lag that is compared to a threshold. The second rule is based on the cross-power in a particular frequency band that is also compared to a threshold. Experiments are carried out in order to validate the feasibility of the aforementioned dialogue detection rules by using ground-truth indicator functions determined by human observers from six different movies. A total of 25 dialogue scenes and another 8 non-dialogue scenes are employed. The probabilities of false alarm and detection are estimated by cross-validation, where 70% of the available scenes are used to learn the thresholds employed in the dialogue detection rules and the remaining 30% of the scenes are used for testing. An almost perfect dialogue detection is reported for every distinct threshold. © Springer-Verlag Berlin Heidelberg 2006
Διερεύνηση μεταλλικών και σύνδρομων φάσεων σε δείγματα μεταλλοφοριών του Ελλαδικού χώρου με χρήση σύγχρονων αναλυτικών τεχνικών σε μικροκλίμακα
Διερεύνηση Πλημυρικής Κατάκλυσης σε συνθήκες μη μόνιμης ροής με τη χρήση Λογισμικών Υδραυλικής Προσομοίωση. Εφαρμογή στον Πηνειό Θεσσαλίας.
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Επιστήμη και Τεχνολογία Υδατικών Πόρων
The Space Environment and Atmospheric Joule Heating of the Habitable Zone Exoplanet TOI700-d
We investigate the space environment conditions near the Earth-size planet
TOI~700~d using a set of numerical models for the stellar corona and wind, the
planetary magnetosphere, and the planetary ionosphere. We drive our simulations
using a scaled-down stellar input and a scaled-up solar input in order to
obtain two independent solutions. We find that for the particular parameters
used in our study, the stellar wind conditions near the planet are not very
extreme -- slightly stronger than that near the Earth in terms of the stellar
wind ram pressure and the intensity of the interplanetary magnetic field. Thus,
the space environment near TOI700-d may not be extremely harmful to the
planetary atmosphere, assuming the planet resembles the Earth. Nevertheless, we
stress that the stellar input parameters and the actual planetary parameters
are unconstrained, and different parameters may result in a much greater effect
on the atmosphere of TOI700-d. Finally, we compare our results to solar wind
measurements in the solar system and stress that modest stellar wind conditions
may not guarantee atmospheric retention of exoplanets.Comment: accepted to Ap
The Stellar CME-flare relation: What do historic observations reveal?
Solar CMEs and flares have a statistically well defined relation, with more
energetic X-ray flares corresponding to faster and more massive CMEs. How this
relation extends to more magnetically active stars is a subject of open
research. Here, we study the most probable stellar CME candidates associated
with flares captured in the literature to date, all of which were observed on
magnetically active stars. We use a simple CME model to derive masses and
kinetic energies from observed quantities, and transform associated flare data
to the GOES 1--8~\AA\ band. Derived CME masses range from to
~g. Associated flare X-ray energies range from to
~erg. Stellar CME masses as a function of associated flare energy
generally lie along or below the extrapolated mean for solar events. In
contrast, CME kinetic energies lie below the analogous solar extrapolation by
roughly two orders of magnitude, indicating approximate parity between flare
X-ray and CME kinetic energies. These results suggest that the CMEs associated
with very energetic flares on active stars are more limited in terms of the
ejecta velocity than the ejecta mass, possibly because of the restraining
influence of strong overlying magnetic fields and stellar wind drag. Lower CME
kinetic energies and velocities present a more optimistic scenario for the
effects of CME impacts on exoplanets in close proximity to active stellar
hosts.Comment: 23 pages, 3 tables, 4 figures, accepted by Ap
Fabrication and modeling of a continuous-flow microfluidic device for on-chip DNA amplification
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.The fabrication process and heat transfer computations for a continuous flow microfluidic device for DNA amplification by polymerase chain reaction (PCR) are described. The building blocks are thin polymeric materials aiming at a low cost and low power consumption device. The fabrication is performed by standard pattern transfer techniques (lithography and etching) used for microelectronics fabrication. The DNA sample flows in a meander shaped microchannel formed on a 100μm thick polyimide (PI) layer through three temperature regions defined by the integrated resistive heaters. The heat transfer computations are performed in a unit cell of the device. They show that, for the fabricated device, the variation of the temperature inside the channel zones where each step (denaturation, annealing, or extension) of PCR occur is less than 1.3K.
This variation increases when the thickness of the PI layer increases. The computations also show that similar Silicon-based devices lead to lower temperature difference between the heaters and the DNA sample compared to the polymer-based fabricated device. However, the power consumption is estimated much greater for Silicon-based devices.This work was co-financed by Hellenic
Funds and by the European Regional Development Fund (ERDF) under the Hellenic
National Strategic Reference Framework
(NSRF) 2007-2013, according to Contract no.
MICRO2-45 of the Project “Microelectronic
Components for Lab-on-chip molecular
analysis instruments for genetic and
environmental applications” within the
Programme "Hellenic Technology Clusters in
Microelectronics – Phase-2 Aid Measure"
- …
