272 research outputs found

    Nicotinamide inhibits melanoma in vitro and in vivo

    Get PDF
    Background: Even though new therapies are available against melanoma, novel approaches are needed to overcome resistance and high-toxicity issues. In the present study the anti-melanoma activity of Nicotinamide (NAM), the amide form of Niacin, was assessed in vitro and in vivo. Methods: Human (A375, SK-MEL-28) and mouse (B16-F10) melanoma cell lines were used for in vitro investigations. Viability, cell-death, cell-cycle distribution, apoptosis, Nicotinamide Adenine Dinucleotide+ (NAD+), Adenosine Triphosphate (ATP), and Reactive Oxygen Species (ROS) levels were measured after NAM treatment. NAM anti-SIRT2 activity was tested in vitro; SIRT2 expression level was investigated by in silico transcriptomic analyses. Melanoma growth in vivo was measured in thirty-five C57BL/6 mice injected subcutaneously with B16-F10 melanoma cells and treated intraperitoneally with NAM. Interferon (IFN)-γ-secreting murine cells were counted with ELISPOT assay. Cytokine/chemokine plasmatic levels were measured by xMAP technology. Niacin receptors expression in human melanoma samples was also investigated by in silico transcriptomic analyses. Results: NAM reduced up to 90% melanoma cell number and induced: I) accumulation in G1-phase (40% increase), ii) reduction in S- A nd G2-phase (about 50% decrease), iii) a 10-fold increase of cell-death and 2.5-fold increase of apoptosis in sub-G1 phase, iv) a significant increase of NAD+, ATP, and ROS levels, v) a strong inhibition of SIRT2 activity in vitro. NAM significantly delayed tumor growth in vivo (p ≤ 0.0005) and improved survival of melanoma-bearing mice (p ≤ 0.0001). About 3-fold increase (p ≤ 0.05) of Interferon-gamma (IFN-γ) producing cells was observed in NAM treated mice. The plasmatic expression levels of 6 cytokines (namely: Interleukin 5 (IL-5), Eotaxin, Interleukin 12 (p40) (IL12(p40)), Interleukin 3 (IL-3), Interleukin 10 (IL-10) and Regulated on Activation Normal T Expressed and Secreted (RANTES) were significantly changed in the blood of NAM treated mice, suggesting a key role of the immune response. The observed inhibitory effect of NAM on SIRT2 enzymatic activity confirmed previous evidence; we show here that SIRT2 expression is significantly increased in melanoma and inversely related to melanoma-patients survival. Finally, we show for the first time that the expression levels of Niacin receptors HCAR2 and HCAR3 is almost abolished in human melanoma samples. Conclusion: NAM shows a relevant anti-melanoma activity in vitro and in vivo and is a suitable candidate for further clinical investigations

    Measurement of photoemission and secondary emission from laboratory dust grains

    Get PDF
    The overall goal of this project is experimentally determine the emission properties of dust grains in order to provide theorists and modelers with an accurate data base to use in codes that predict the charging of grains in various plasma environments encountered in the magnetospheres of the planets. In general these modelers use values which have been measured on planar, bulk samples of the materials in question. The large enhancements expected due to the small size of grains can have a dramatic impact upon the predictions and the ultimate utility of these predictions. The first experimental measurement of energy resolved profiles of the secondary electron emission coefficient, 6, of sub-micron diameter particles has been accomplished. Bismuth particles in the size range of .022 to .165 micrometers were generated in a moderate pressure vacuum oven (average size is a function of oven temperature and pressure) and introduced into a high vacuum chamber where they interacted with a high energy electron beam (0.4 to 20 keV). Large enhancements in emission were observed with a peak value, delta(sub max) = 4. 5 measured for the ensemble of particles with a mean size of .022 micrometers. This is in contrast to the published value, delta(sub max) = 1.2, for bulk bismuth. The observed profiles are in general agreement with recent theoretical predictions made by Chow et al. at UCSD

    Injectable xyloglucan hydrogels incorporating spheroids of adipose stem cells for bone and cartilage regeneration

    Get PDF
    Cartilage or bone regeneration approaches based on the direct injection of mesenchymal stem cells (MSCs) at the lesion site encounter several challenges, related to uncontrolled cell spreading and differentiation, reduced cell viability and poor engrafting. This work presents a simple and versatile strategy based on the synergic combination of in-situ forming hydrogels and spheroids of adipose stem cells (SASCs) with great potential for minimally invasive regenerative interventions aimed to threat bone and cartilage defects. Aqueous dispersions of partially degalactosylated xyloglucan (dXG) are mixed with SASCs derived from liposuction and either a chondroinductive or an osteoinductive medium. The dispersions rapidly set into hydrogels when temperature is brought to 37 °C. The physico-chemical and mechanical properties of the hydrogels are controlled by polymer concentration. The hydrogels, during 21 day incubation at 37 °C, undergo significant structural rearrangements that support cell proliferation and spreading. In formulations containing 1%w dXG cell viability increases up to 300% for SASCs-derived osteoblasts and up to 1000% for SASCs-derived chondrocytes if compared with control 2D cultures. The successful differentiation into the target cells is supported by the expression of lineage-specific genes. Cell-cell and cell-matrix interactions are also investigated. All formulations resulted injectable, and the incorporated cells are fully viable after injection

    Analysis of sequence variability and transcriptional profile of cannabinoid synthase genes in cannabis sativa l. Chemotypes with a focus on cannabichromenic acid synthase

    Get PDF
    Cannabis sativa L. has been long cultivated for its narcotic potential due to the accumulation of tetrahydrocannabinolic acid (THCA) in female inflorescences, but nowadays its production for fiber, seeds, edible oil and bioactive compounds has spread throughout the world. However, some hemp varieties still accumulate traces of residual THCA close to the 0.20% limit set by European Union, despite the functional gene encoding for THCA synthase (THCAS) is lacking. Even if some hypotheses have been produced, studies are often in disagreement especially on the role of the cannabichromenic acid synthase (CBCAS). In this work a set of European Cannabis genotypes, representative of all chemotypes, were investigated from a chemical and molecular point of view. Highly specific primer pairs were developed to allow an accurate distinction of different cannabinoid synthases genes. In addition to their use as markers to detect the presence of CBCAS at genomic level, they allowed the analysis of transcriptional profiles in hemp or marijuana plants. While the high level of transcription of THCAS and cannabidiolic acid synthase (CBDAS) clearly reflects the chemical phenotype of the plants, the low but stable transcriptional level of CBCAS in all genotypes suggests that these genes are active and might contribute to the final amount of cannabinoids

    Hydrogel scaffolds based on k-Carrageenan/xyloglucan blends to host spheroids from human adipose stem cells

    Get PDF
    Hydrogels are water-swollen networks of hydrophilic polymer. They can be fabricated in various shapes and swell in water or aqueous solutions maintaining their original shape or undergo progressive erosion; can exibit large volume phase transitions with the change of one environmental parameter (stimuli-responsivness), shock absorption and low sliding friction properties (1). The morphology and mechanical properties of hydrogels are strongly affected by the network composition, the nature and degree of crosslinking and the degree of swelling. Indeed, when hydrogels are designed as scaffolds for human tissues remodeling, they must have sufficient mechanical integrity to provide support to the cells from the time of implantation to the completion of the process. The large amount of water present in the hydrogels and its microscopic pores interconnectivity allows transportation of nutrients, oxygen and metabolites, that ensures cells viability, and permits cells migration and scaffold colonization. The polymeric network can immobilize biomolecules that may affect cells growth or differentiation, control drug release profiles and enzymatic degradation (2,3). The combination of two hydrogelforming polymers with different chemistries and crosslinking densities can be used to tailor the morphology, mechanical strength and toughness of the scaffold to meet specific requirements (1). This work investigates the physico-chemical, morphological and mechanical properties of hydrogels formed by the blend of two polysaccharides, k-Carrageenan (k-C) and Degalactosylated Xyloglucan (Deg-XG) undergoing salt-induced and temperature-induced solgel transition, respectively. It also studies the compatibility of the two biopolymers with spheroids from adipose-derived stem cells (S-ASCs) in the prospect of developing instructive scaffolds for use in regenerative medicine

    A Superspace Formulation of The BV Action for Higher Derivative Theories

    Full text link
    We first analyze the anti-BRST and double BRST structures of a certain higher derivative theory that has been known to possess BRST symmetry associated with its higher derivative structure. We discuss the invariance of this theory under shift symmetry in the Batalin Vilkovisky (BV) formalism. We show that the action for this theory can be written in a manifestly extended BRST invariant manner in superspace formalism using one Grassmann coordinate. It can also be written in a manifestly extended BRST invariant manner and on-shell manifestly extended anti-BRST invariant manner in superspace formalism using two Grassmann coordinates.Comment: accepted for publication in EPJ

    Self-Similar Random Processes and Infinite-Dimensional Configuration Spaces

    Full text link
    We discuss various infinite-dimensional configuration spaces that carry measures quasiinvariant under compactly-supported diffeomorphisms of a manifold M corresponding to a physical space. Such measures allow the construction of unitary representations of the diffeomorphism group, which are important to nonrelativistic quantum statistical physics and to the quantum theory of extended objects in d-dimensional Euclidean space. Special attention is given to measurable structure and topology underlying measures on generalized configuration spaces obtained from self-similar random processes (both for d = 1 and d > 1), which describe infinite point configurations having accumulation points

    In the eye of the storm : the Italian economy and the eurozone crisis

    Get PDF
    The eurozone crisis had a more significant and longer-lasting impact on Italy than on virtually any other member state, with the effects still visible a decade after. The extent of the shock was surprising in view of progress Italy had apparently made in the 1990s in terms of enhancing its capacity to meet the demands of European Monetary Union. The explanation for this traumatic economic experience lies in Italy’s deep, long-term, structural tensions which were placed under severe pressure during the 1990s and which were cracked open by the 2011 sovereign debt crisis. These have had long-standing economic effects as well as political ramifications in terms of a significant change in the Italy–EU relationship
    • …
    corecore