124 research outputs found

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship

    Ectodermal Influx and Cell Hypertrophy Provide Early Growth for All Murine Mammary Rudiments, and Are Differentially Regulated among Them by Gli3

    Get PDF
    Mammary gland development starts in utero with one or several pairs of mammary rudiments (MRs) budding from the surface ectodermal component of the mammalian embryonic skin. Mice develop five pairs, numbered MR1 to MR5 from pectoral to inguinal position. We have previously shown that Gli3Xt-J/Xt-J mutant embryos, which lack the transcription factor Gli3, do not form MR3 and MR5. We show here that two days after the MRs emerge, Gli3Xt-J/Xt-J MR1 is 20% smaller, and Gli3Xt-J/Xt-J MR2 and MR4 are 50% smaller than their wild type (wt) counterparts. Moreover, while wt MRs sink into the underlying dermis, Gli3Xt-J/Xt-J MR4 and MR2 protrude outwardly, to different extents. To understand why each of these five pairs of functionally identical organs has its own, distinct response to the absence of Gli3, we determined which cellular mechanisms regulate growth of the individual MRs, and whether and how Gli3 regulates these mechanisms. We found a 5.5 to 10.7-fold lower cell proliferation rate in wt MRs compared to their adjacent surface ectoderm, indicating that MRs do not emerge or grow via locally enhanced cell proliferation. Cell-tracing experiments showed that surface ectodermal cells are recruited toward the positions where MRs emerge, and contribute to MR growth during at least two days. During the second day of MR development, peripheral cells within the MRs undergo hypertrophy, which also contributes to MR growth. Limited apoptotic cell death counterbalances MR growth. The relative contribution of each of these processes varies among the five MRs. Furthermore, each of these processes is impaired in the absence of Gli3, but to different extents in each MR. This differential involvement of Gli3 explains the variation in phenotype among Gli3Xt-J/Xt-J MRs, and may help to understand the variation in numbers and positions of mammary glands among mammals

    Genital Herpes Has Played a More Important Role than Any Other Sexually Transmitted Infection in Driving HIV Prevalence in Africa

    Get PDF
    Extensive evidence from observational studies suggests a role for genital herpes in the HIV epidemic. A number of herpes vaccines are under development and several trials of the efficacy of HSV-2 treatment with acyclovir in reducing HIV acquisition, transmission, and disease progression have just reported their results or will report their results in the next year. The potential impact of these interventions requires a quantitative assessment of the magnitude of the synergy between HIV and HSV-2 at the population level.A deterministic compartmental model of HIV and HSV-2 dynamics and interactions was constructed. The nature of the epidemiologic synergy was explored qualitatively and quantitatively and compared to other sexually transmitted infections (STIs). The results suggest a more substantial role for HSV-2 in fueling HIV spread in sub-Saharan Africa than other STIs. We estimate that in settings of high HSV-2 prevalence, such as Kisumu, Kenya, more than a quarter of incident HIV infections may have been attributed directly to HSV-2. HSV-2 has also contributed considerably to the onward transmission of HIV by increasing the pool of HIV positive persons in the population and may explain one-third of the differential HIV prevalence among the cities of the Four City study. Conversely, we estimate that HIV had only a small net impact on HSV-2 prevalence.HSV-2 role as a biological cofactor in HIV acquisition and transmission may have contributed substantially to HIV particularly by facilitating HIV spread among the low-risk population with stable long-term sexual partnerships. This finding suggests that prevention of HSV-2 infection through a prophylactic vaccine may be an effective intervention both in nascent epidemics with high HIV incidence in the high risk groups, and in established epidemics where a large portion of HIV transmission occurs in stable partnerships

    Rift Valley Fever Virus NSs Protein Promotes Post-Transcriptional Downregulation of Protein Kinase PKR and Inhibits eIF2α Phosphorylation

    Get PDF
    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-β mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or α-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)–mediated eukaryotic initiation factor (eIF)2α phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2α accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2α phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2α phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts

    True versus False Parasite Interactions: A Robust Method to Take Risk Factors into Account and Its Application to Feline Viruses

    Get PDF
    International audienceBACKGROUND: Multiple infections are common in natural host populations and interspecific parasite interactions are therefore likely within a host individual. As they may seriously impact the circulation of certain parasites and the emergence and management of infectious diseases, their study is essential. In the field, detecting parasite interactions is rendered difficult by the fact that a large number of co-infected individuals may also be observed when two parasites share common risk factors. To correct for these "false interactions", methods accounting for parasite risk factors must be used. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper we propose such a method for presence-absence data (i.e., serology). Our method enables the calculation of the expected frequencies of single and double infected individuals under the independence hypothesis, before comparing them to the observed ones using the chi-square statistic. The method is termed "the corrected chi-square." Its robustness was compared to a pre-existing method based on logistic regression and the corrected chi-square proved to be much more robust for small sample sizes. Since the logistic regression approach is easier to implement, we propose as a rule of thumb to use the latter when the ratio between the sample size and the number of parameters is above ten. Applied to serological data for four viruses infecting cats, the approach revealed pairwise interactions between the Feline Herpesvirus, Parvovirus and Calicivirus, whereas the infection by FIV, the feline equivalent of HIV, did not modify the risk of infection by any of these viruses. CONCLUSIONS/SIGNIFICANCE: This work therefore points out possible interactions that can be further investigated in experimental conditions and, by providing a user-friendly R program and a tutorial example, offers new opportunities for animal and human epidemiologists to detect interactions of interest in the field, a crucial step in the challenge of multiple infections

    Effects of diet and exercise interventions on diabetes risk factors in adults without diabetes: meta-analyses of controlled trials

    Full text link
    BACKGROUND AND AIMS: Fasting insulin (FI), fasting glucose (FG), systolic blood pressure (SBP), high density lipoproteins (HDL), triacylglycerides (TAG), and body mass index (BMI) are well-known risk factors for type 2 diabetes. Reliable estimates of lifestyle intervention effects on these factors allow diabetes risk to be predicted accurately. The present meta-analyses were conducted to quantitatively summarize effects of diet and exercise intervention programs on FI, FG, SBP, HDL, TAG and BMI in adults without diabetes. MATERIALS AND METHODS: MEDLINE and EMBASE were searched to find studies involving diet plus exercise interventions. Studies were required to use adults not diagnosed with type 2 diabetes, involve both dietary and exercise counseling, and include changes in diabetes risk factors as outcome measures. Data from 18, 24, 23, 30, 29 and 29 studies were used for the analyses of FI, FG, SBP, HDL, TAG and BMI, respectively. About 60% of the studies included exclusively overweight or obese adults. Mean age and BMI of participants at baseline were 48 years and 30.1 kg/m(2). Heterogeneity of intervention effects was first estimated using random-effect models and explained further with mixed-effects models. RESULTS: Adults receiving diet and exercise education for approximately one year experienced significant (P <0.001) reductions in FI (-2.56 ± 0.58 mU/L), FG (-0.18 ± 0.04 mmol/L), SBP (-2.77 ± 0.56 mm Hg), TAG (-0.258 ± 0.037 mmol/L) and BMI (-1.61 ± 0.13 kg/m(2)). These risk factor changes were related to a mean calorie intake reduction of 273 kcal/d, a mean total fat intake reduction of 6.3%, and 40 minutes of moderate intensity aerobic exercise four times a week. Lifestyle intervention did not have an impact on HDL. More than 99% of total variability in the intervention effects was due to heterogeneity. Variability in calorie and fat intake restrictions, exercise type and duration, length of the intervention period, and the presence or absence of glucose, insulin, or lipid abnormalities explained 23-63% of the heterogeneity. CONCLUSIONS: Calorie and total fat intake restrictions coupled with moderate intensity aerobic exercises significantly improved diabetes risk factors in healthy normoglycemic adults although normoglycemic adults with glucose, insulin, and lipid abnormalities appear to benefit more

    GH and the cardiovascular system: an update on a topic at heart

    Get PDF
    corecore