540 research outputs found

    Do Cues Matter? Highly Inductive Settlement Cues Don't Ensure High Post-Settlement Survival in Sea Urchin Aquaculture

    Get PDF
    Increasing settlement and post-settlement survival during the critical transition from planktonic larvae to benthic juveniles will increase efficiency for sea urchin aquaculture. This study investigated the effects of temperature and settlement cues on the settlement and post-settlement survival of the sea urchin Tripneustes gratilla during this phase. The current commercial methodology, which utilises natural biofilm settlement plates, was tested and resulted in low settlement (<2%) and poor post-settlement survival (<1% of settled urchins). In laboratory trials, settlement was high and unaffected by temperatures between 24 and 30°C, but significantly decreased at 33°C. Development of spines, however, was significantly affected by temperatures over 29°C. Mirroring this result, post-settlement survival was optimal between 24–28°C. In laboratory assays, the macroalgae Sargassum linearifolium and Corallina officinalis, and seawater conditioned with these algae, induced significantly higher settlement (>90%) than a natural biofilm (∼25%). The addition of macroalgae-conditioned seawater to natural biofilm significantly increased settlement rates (>85%). Mixed consortia and single strains of bacteria isolated from macroalgae, biofilms and adult conspecifics all induced significant settlement, but at significantly lower rates than macroalgae. No evidence was found that higher rates of settlement to bacteria on macroalgae were generated by a cofactor from the macroalgae. Age of bacterial cultures, culturing bacteria on solid and liquid media and concentration of nutrients in cultures had little effect on settlement rates. Finally, macroalgae-conditioned seawater combined with natural biofilm settlement plates induced significantly higher settlement than to the biofilm plates alone in a commercial scale trial. However, high post-settlement mortality resulted in equivalent survival between treatments after 25 days. This study highlights that settlement studies should extend to post-settlement survival, which remains poor for T. gratilla and is a significant obstacle to increasing efficiency for aquaculture

    Optical neuron using polarisation switching in a 1550nm-VCSEL

    Get PDF
    We report a new approach to mimic basic functionalities of a neuron using a 1550 nm Vertical Cavity Surface Emitting Laser (VCSEL) which is based on the polarisation switching (PS) that can be induced in these devices when subject to polarised optical injection. Positive and negative all-optical threshold operations are demonstrated experimentally using external optical injection into the two orthogonal polarizations of the fundamental transverse mode. The polarisation of the light emitted by the device is used to determine the state of the VCSEL-Neuron, active (orthogonal) or inactive (parallel). This approach forms a new way to reproduce optically the response of a neuron to an excitatory and an inhibitory stimulus. © 2010 Optical Society of America

    Cutaneous tactile allodynia associated with microvascular dysfunction in muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cutaneous tactile allodynia, or painful hypersensitivity to mechanical stimulation of the skin, is typically associated with neuropathic pain, although also present in chronic pain patients who do not have evidence of nerve injury. We examine whether deep tissue microvascular dysfunction, a feature common in chronic non-neuropathic pain, contributes to allodynia.</p> <p>Results</p> <p>Persistent cutaneous allodynia is produced in rats following a hind paw ischemia-reperfusion injury that induces microvascular dysfunction, including arterial vasospasms and capillary slow flow/no-reflow, in muscle. Microvascular dysfunction leads to persistent muscle ischemia, a reduction of intraepidermal nerve fibers, and allodynia correlated with muscle ischemia, but not with skin nerve loss. The affected hind paw muscle shows lipid peroxidation, an upregulation of nuclear factor kappa B, and enhanced pro-inflammatory cytokines, while allodynia is relieved by agents that inhibit these alterations. Allodynia is increased, along with hind paw muscle lactate, when these rats exercise, and is reduced by an acid sensing ion channel antagonist.</p> <p>Conclusion</p> <p>Our results demonstrate how microvascular dysfunction and ischemia in muscle can play a critical role in the development of cutaneous allodynia, and encourage the study of how these mechanisms contribute to chronic pain. We anticipate that focus on the pain mechanisms associated with microvascular dysfunction in muscle will provide new effective treatments for chronic pain patients with cutaneous tactile allodynia.</p

    Parameter identification problems in the modelling of cell motility

    Get PDF
    We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg–Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree
    • …
    corecore