188 research outputs found

    Determination of the phase of an electromagnetic field via incoherent detection of fluorescence

    Full text link
    We show that the phase of a field can be determined by incoherent detection of the population of one state of a two-level system if the Rabi frequency is comparable to the Bohr frequency so that the rotating wave approximation is inappropriate. This implies that a process employing the measurement of population is not a square-law detector in this limit. We discuss how the sensitivity of the degree of excitation to the phase of the field may pose severe constraints on precise rotations of quantum bits involving low-frequency transitions. We present a scheme for observing this effect in an atomic beam, despite the spread in the interaction time.Comment: 4 pages, 2 fig

    New Spatially Resolved Observations of the T Cha Transition Disk and Constraints on the Previously Claimed Substellar Companion

    Get PDF
    We present multi-epoch non-redundant masking observations of the T Cha transition disk, taken at the VLT and Magellan in H, Ks, and L' bands. T Cha is one of a small number of transition disks that host companion candidates discovered by high-resolution imaging techniques, with a putative companion at a position angle of 78 degrees, separation of 62 mas, and contrast at L' of 5.1 mag. We find comparable binary parameters in our re-reduction of the initial detection images, and similar parameters in the 2011 L', 2013 NaCo L', and 2013 NaCo Ks data sets. We find a close-in companion signal in the 2012 NaCo L' dataset that cannot be explained by orbital motion, and a non-detection in the 2013 MagAO/Clio2 L' data. However, Monte-carlo simulations show that the best fits to the 2012 NaCo and 2013 MagAO/Clio2 followup data may be consistent with noise. There is also a significant probability of false non-detections in both of these data sets. We discuss physical scenarios that could cause the best fits, and argue that previous companion and scattering explanations are inconsistent with the results of the much larger dataset presented here.Comment: 25 pages, 22 figures, accepted for publication in Ap

    First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of eta Corvi

    Get PDF
    We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81 - 12.41 um) emission around the nearby main-sequence star eta Crv (F2V, 1-2 Gyr). The measured source null depth amounts to 4.40% +/- 0.35% over a field-of-view of 140 mas in radius (~2.6\,AU at the distance of eta Corvi) and shows no significant variation over 35{\deg} of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by Spitzer/IRS (~23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the Solar zodiacal cloud, unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5-1.0 AU, significantly closer than previously predicted by models of the IRS spectrum (~3 AU). The predicted disk sizes can be reconciled if the warm disk is not centrosymmetric, or if the dust particles are dominated by very small grains. Both possibilities hint that a recent collision has produced much of the dust. Finally, we discuss the implications for the presence of dust at the distance where the insolation is the same as Earth's (2.3 AU).Comment: 9 pages, 6 figures, accepted for publication in Ap

    Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes

    Get PDF
    Direct detection, also known as direct imaging, is a method for discovering and characterizing the atmospheres of planets at intermediate and wide separations. It is the only means of obtaining spectra of non-transiting exoplanets. Characterizing the atmospheres of planets in the <5 AU regime, where RV surveys have revealed an abundance of other worlds, requires a 30-m-class aperture in combination with an advanced adaptive optics system, coronagraph, and suite of spectrometers and imagers - this concept underlies planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the GMT (GMagAO-X). These instruments could provide astrometry, photometry, and spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas giants. For the first time habitable zone exoplanets will become accessible to direct imaging, and these instruments have the potential to detect and characterize the innermost regions of nearby M-dwarf planetary systems in reflected light. High-resolution spectroscopy will not only illuminate the physics and chemistry of exo-atmospheres, but may also probe rocky, temperate worlds for signs of life in the form of atmospheric biomarkers (combinations of water, oxygen and other molecular species). By completing the census of non-transiting worlds at a range of separations from their host stars, these instruments will provide the final pieces to the puzzle of planetary demographics. This whitepaper explores the science goals of direct imaging on 30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of the NA

    Imaging protoplanets: observing transition disks with non-redundant masking

    Get PDF
    Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.Comment: SPIE conference proceedin

    The HOSTS Survey for Exozodiacal Dust: Preliminary results and future prospects

    Get PDF
    [abridged] The presence of large amounts of dust in the habitable zones of nearby stars is a significant obstacle for future exo-Earth imaging missions. We executed an N band nulling interferometric survey to determine the typical amount of such exozodiacal dust around a sample of nearby main sequence stars. The majority of our data have been analyzed and we present here an update of our ongoing work. We find seven new N band excesses in addition to the high confidence confirmation of three that were previously known. We find the first detections around Sun-like stars and around stars without previously known circumstellar dust. Our overall detection rate is 23%. The inferred occurrence rate is comparable for early type and Sun-like stars, but decreases from 71% [+11%/-20%] for stars with previously detected mid- to far-infrared excess to 11% [+9%/-4%] for stars without such excess, confirming earlier results at high confidence. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal luminosity function of the dust, we find upper limits on the median dust level around all stars without previously known mid to far infrared excess of 11.5 zodis at 95% confidence level. The corresponding upper limit for Sun-like stars is 16 zodis. An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a corresponding limit of 7.5 zodis. We provide important new insights into the occurrence rate and typical levels of habitable zone dust around main sequence stars. Exploiting the full range of capabilities of the LBTI provides a critical opportunity for the detailed characterization of a sample of exozodiacal dust disks to understand the origin, distribution, and properties of the dust.Comment: To appear in SPIE Astronomical Telescopes + Instrumentation 2018 proceedings. Some typos fixed, one reference adde
    • …
    corecore