188 research outputs found
Determination of the phase of an electromagnetic field via incoherent detection of fluorescence
We show that the phase of a field can be determined by incoherent detection
of the population of one state of a two-level system if the Rabi frequency is
comparable to the Bohr frequency so that the rotating wave approximation is
inappropriate. This implies that a process employing the measurement of
population is not a square-law detector in this limit. We discuss how the
sensitivity of the degree of excitation to the phase of the field may pose
severe constraints on precise rotations of quantum bits involving low-frequency
transitions. We present a scheme for observing this effect in an atomic beam,
despite the spread in the interaction time.Comment: 4 pages, 2 fig
Recommended from our members
Job task and functional analysis of the Division of Reactor Projects, office of Nuclear Reactor Regulation. Final report
A job task and functional analysis was recently completed for the positions that make up the regional Divisions of Reactor Projects. Among the conclusions of that analysis was a recommendation to clarify roles and responsibilities among site, regional, and headquarters personnel. As that analysis did not cover headquarters personnel, a similar analysis was undertaken of three headquarters positions within the Division of Reactor Projects: Licensing Assistants, Project Managers, and Project Directors. The goals of this analysis were to systematically evaluate the tasks performed by these headquarters personnel to determine job training requirements, to account for variations due to division/regional assignment or differences in several experience categories, and to determine how, and by which positions, certain functions are best performed. The results of this analysis include recommendations for training and for job design. Data to support this analysis was collected by a survey instrument and through several sets of focus group meetings with representatives from each position
New Spatially Resolved Observations of the T Cha Transition Disk and Constraints on the Previously Claimed Substellar Companion
We present multi-epoch non-redundant masking observations of the T Cha
transition disk, taken at the VLT and Magellan in H, Ks, and L' bands. T Cha is
one of a small number of transition disks that host companion candidates
discovered by high-resolution imaging techniques, with a putative companion at
a position angle of 78 degrees, separation of 62 mas, and contrast at L' of 5.1
mag. We find comparable binary parameters in our re-reduction of the initial
detection images, and similar parameters in the 2011 L', 2013 NaCo L', and 2013
NaCo Ks data sets. We find a close-in companion signal in the 2012 NaCo L'
dataset that cannot be explained by orbital motion, and a non-detection in the
2013 MagAO/Clio2 L' data. However, Monte-carlo simulations show that the best
fits to the 2012 NaCo and 2013 MagAO/Clio2 followup data may be consistent with
noise. There is also a significant probability of false non-detections in both
of these data sets. We discuss physical scenarios that could cause the best
fits, and argue that previous companion and scattering explanations are
inconsistent with the results of the much larger dataset presented here.Comment: 25 pages, 22 figures, accepted for publication in Ap
First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of eta Corvi
We report on the first nulling interferometric observations with the Large
Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81 - 12.41
um) emission around the nearby main-sequence star eta Crv (F2V, 1-2 Gyr). The
measured source null depth amounts to 4.40% +/- 0.35% over a field-of-view of
140 mas in radius (~2.6\,AU at the distance of eta Corvi) and shows no
significant variation over 35{\deg} of sky rotation. This relatively low null
is unexpected given the total disk to star flux ratio measured by Spitzer/IRS
(~23% across the N' band), suggesting that a significant fraction of the dust
lies within the central nulled response of the LBTI (79 mas or 1.4 AU).
Modeling of the warm disk shows that it cannot resemble a scaled version of the
Solar zodiacal cloud, unless it is almost perpendicular to the outer disk
imaged by Herschel. It is more likely that the inner and outer disks are
coplanar and the warm dust is located at a distance of 0.5-1.0 AU,
significantly closer than previously predicted by models of the IRS spectrum
(~3 AU). The predicted disk sizes can be reconciled if the warm disk is not
centrosymmetric, or if the dust particles are dominated by very small grains.
Both possibilities hint that a recent collision has produced much of the dust.
Finally, we discuss the implications for the presence of dust at the distance
where the insolation is the same as Earth's (2.3 AU).Comment: 9 pages, 6 figures, accepted for publication in Ap
Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes
Direct detection, also known as direct imaging, is a method for discovering
and characterizing the atmospheres of planets at intermediate and wide
separations. It is the only means of obtaining spectra of non-transiting
exoplanets. Characterizing the atmospheres of planets in the <5 AU regime,
where RV surveys have revealed an abundance of other worlds, requires a
30-m-class aperture in combination with an advanced adaptive optics system,
coronagraph, and suite of spectrometers and imagers - this concept underlies
planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the
GMT (GMagAO-X). These instruments could provide astrometry, photometry, and
spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas
giants. For the first time habitable zone exoplanets will become accessible to
direct imaging, and these instruments have the potential to detect and
characterize the innermost regions of nearby M-dwarf planetary systems in
reflected light. High-resolution spectroscopy will not only illuminate the
physics and chemistry of exo-atmospheres, but may also probe rocky, temperate
worlds for signs of life in the form of atmospheric biomarkers (combinations of
water, oxygen and other molecular species). By completing the census of
non-transiting worlds at a range of separations from their host stars, these
instruments will provide the final pieces to the puzzle of planetary
demographics. This whitepaper explores the science goals of direct imaging on
30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of
the NA
Imaging protoplanets: observing transition disks with non-redundant masking
Transition disks, protoplanetary disks with inner clearings, are promising
objects in which to directly image forming planets. The high contrast imaging
technique of non-redundant masking is well posed to detect planetary mass
companions at several to tens of AU in nearby transition disks. We present
non-redundant masking observations of the T Cha and LkCa 15 transition disks,
both of which host posited sub-stellar mass companions. However, due to a loss
of information intrinsic to the technique, observations of extended sources
(e.g. scattered light from disks) can be misinterpreted as moving companions.
We discuss tests to distinguish between these two scenarios, with applications
to the T Cha and LkCa 15 observations. We argue that a static,
forward-scattering disk can explain the T Cha data, while LkCa 15 is best
explained by multiple orbiting companions.Comment: SPIE conference proceedin
The HOSTS Survey for Exozodiacal Dust: Preliminary results and future prospects
[abridged] The presence of large amounts of dust in the habitable zones of
nearby stars is a significant obstacle for future exo-Earth imaging missions.
We executed an N band nulling interferometric survey to determine the typical
amount of such exozodiacal dust around a sample of nearby main sequence stars.
The majority of our data have been analyzed and we present here an update of
our ongoing work. We find seven new N band excesses in addition to the high
confidence confirmation of three that were previously known. We find the first
detections around Sun-like stars and around stars without previously known
circumstellar dust. Our overall detection rate is 23%. The inferred occurrence
rate is comparable for early type and Sun-like stars, but decreases from 71%
[+11%/-20%] for stars with previously detected mid- to far-infrared excess to
11% [+9%/-4%] for stars without such excess, confirming earlier results at high
confidence. For completed observations on individual stars, our sensitivity is
five to ten times better than previous results. Assuming a lognormal luminosity
function of the dust, we find upper limits on the median dust level around all
stars without previously known mid to far infrared excess of 11.5 zodis at 95%
confidence level. The corresponding upper limit for Sun-like stars is 16 zodis.
An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a
corresponding limit of 7.5 zodis. We provide important new insights into the
occurrence rate and typical levels of habitable zone dust around main sequence
stars. Exploiting the full range of capabilities of the LBTI provides a
critical opportunity for the detailed characterization of a sample of
exozodiacal dust disks to understand the origin, distribution, and properties
of the dust.Comment: To appear in SPIE Astronomical Telescopes + Instrumentation 2018
proceedings. Some typos fixed, one reference adde
- …