173 research outputs found

    The Violation of Cooperative Principle a Case of Humorous Verbal Cartoon in Kompas

    Full text link
    This research is aimed at describing the types of maxim violated in humorous verbal cartoon in Kompas, to find out the type of the maxims that is dominantly violated in it and to find out the causes. The method of research is descriptive qualitative research. The data is analyzed by interpreting the conversations and analyzing them based on the types of the maxim violated. From the data, it was found that the violation of the maxim of quality is 12 (20.33%), the violation of the maxim of quantity is 25 (42.37%), the violation of manner is 15 (25.42%), and the violation of the maxim of relevance is 7 (11.86%). The frequency and the percentage shows that maxim of quantity is the dominant type of maxim which is violated

    Deoxyribonucleic Acid Polymerase from Wheat Embryos

    Full text link

    Onset of Deoxyribonucleic Acid Synthesis in Germinating Wheat Embryos

    Full text link

    De Novo

    Full text link

    Structure of a Bathtub Vortex : Importance of the Bottom Boundary Layer

    Get PDF
    A bathtub vortex in a cylindrical tank rotating at a constant angular velocity [omega] is studied by meansof a laboratory experiment, a numerical experiment and a boundary layer theory. The laboratory and numerical experiments show that two regimes of vortices in the steady-state can occur depending on [omega] and the volume flux Q through the drain hole: when Q is large and [omega] is small, a potential vortex is formed in which angular momentum outside the vortex core is constant in the non-rotating frame. However, when Q is small or [omega] is large, a vortex is generated in which the angular momentum decreases with decreasing radius. Boundary layertheory shows that the vortex regimes strongly depend on the theoretical radial volume flux through the bottomboundary layer under a potential vortex : when the ratio of Q to the theoretical boundary-layer radial volume flux Qb (scaled by 2π R2([omega] ν)12 ) at the outer rim of the vortex core is larger than a critical value (of order 1), the radial flow in the interior exists at all radiiand Regime I is realized, where R is the inner radius of the tank and ν the kinematicviscosity.When the ratio is less than the critical value, the radial flow in the interior nearlyvanishes inside a critical radius and almost all of the radial volume flux occurs only in the boundary layer,resulting in Regime II in which the angular momentum is not constant with radius. This criterion is found to explain the results of the laboratory and numerical experiments very well

    Active Flow Control on Vertical Tail Models

    Get PDF
    Active flow control (AFC) subscale experiments were conducted at the Lucas Wind Tunnel of the California Institute of Technology. Tests were performed on a generic vertical tail model at low speeds. Fluidic oscillators were used at the trailing edge of the main element (vertical stabilizer) to redirect the flow over the rudder and delay or prevent flow separation. Side force increases in excess of 50% were achieved with a 2% momentum coefficient (C_μ) input. The results indicated that a collective C_μ of about 1% could increase the side force by 30–50%. This result is achieved by reducing the spanwise flow on the swept back wings that contributes to early flow separation near their tips. These experiments provided the technical backdrop to test the full-scale Boeing 757 vertical tail model equipped with a fluidic oscillator system at the National Full-scale Aerodynamics Complex 40-by 80-foot Wind Tunnel, NASA Ames Research Center. The C_μ is shown to be an important parameter for scaling a fluidic oscillator AFC system from subscale to full-scale wind tunnel tests. The results of these tests provided the required rationale to use a fluidic oscillator AFC configuration for a follow-on flight test on the Boeing 757 ecoDemonstrator

    3-D Perturbations in Conformal Turbulence

    Full text link
    The effects of three-dimensional perturbations in two-dimensional turbulence are investigated, through a conformal field theory approach. We compute scaling exponents for the energy spectra of enstrophy and energy cascades, in a strong coupling limit, and compare them to the values found in recent experiments. The extension of unperturbed conformal turbulence to the present situation is performed by means of a simple physical picture in which the existence of small scale random forces is closely related to deviations of the exact two-dimensional fluid motion.Comment: Discussion of intermittency improved. Figure include

    Active Flow Control on Vertical Tail Models

    Get PDF
    Active flow control (AFC) subscale experiments were conducted at the Lucas Wind Tunnel of the California Institute of Technology. Tests were performed on a generic vertical tail model at low speeds. Fluidic oscillators were used at the trailing edge of the main element (vertical stabilizer) to redirect the flow over the rudder and delay or prevent flow separation. Side force increases in excess of 50% were achieved with a 2% momentum coefficient (C(sub )) input. The results indicated that a collective C(sub ) of about 1% could increase the side force by 3050%. This result is achieved by reducing the spanwise flow on the swept back wings that contributes to early flow separation near their tips. These experiments provided the technical backdrop to test the full-scale Boeing 757 vertical tail model equipped with a fluidic oscillator system at the National Full-scale Aerodynamics Complex 40-by 80-foot Wind Tunnel, NASA Ames Research Center. The C(sub ) is shown to be an important parameter for scaling a fluidic oscillator AFC system from subscale to full-scale wind tunnel tests. The results of these tests provided the required rationale to use a fluidic oscillator AFC configuration for a follow-on flight test on the Boeing 757 ecoDemonstrator

    Active Flow Control on Vertical Tail Models

    Get PDF
    Active flow control (AFC) subscale experiments were conducted at the Lucas Wind Tunnel of the California Institute of Technology. Tests were performed on a generic vertical tail model at low speeds. Fluidic oscillators were used at the trailing edge of the main element (vertical stabilizer) to redirect the flow over the rudder and delay or prevent flow separation. Side force increases in excess of 50% were achieved with a 2% momentum coefficient (C_μ) input. The results indicated that a collective C_μ of about 1% could increase the side force by 30–50%. This result is achieved by reducing the spanwise flow on the swept back wings that contributes to early flow separation near their tips. These experiments provided the technical backdrop to test the full-scale Boeing 757 vertical tail model equipped with a fluidic oscillator system at the National Full-scale Aerodynamics Complex 40-by 80-foot Wind Tunnel, NASA Ames Research Center. The C_μ is shown to be an important parameter for scaling a fluidic oscillator AFC system from subscale to full-scale wind tunnel tests. The results of these tests provided the required rationale to use a fluidic oscillator AFC configuration for a follow-on flight test on the Boeing 757 ecoDemonstrator
    corecore