1,932 research outputs found

    No compelling evidence of distributed production of CO in comet C/1995 O1 (Hale-Bopp) from millimeter interferometric data and a reanalysis of near-IR lines

    Full text link
    Based on long-slit infrared spectroscopic observations, it has been suggested that half of the carbon monoxide present in the atmosphere of comet C/1995 O1 (Hale-Bopp) close to perihelion was released by a distributed source in the coma, whose nature (dust or gas) remains unidentified. We re-assess the origin of CO in Hale-Bopp's coma from millimeter interferometric data and a re-analysis of the IR lines. Simultaneous observations of the CO J(1-0) (115 GHz) and J(2-1) (230 GHz) lines were undertaken with the IRAM interferometer in single-dish and interferometric modes. The diversity of angular resolutions (from 1700 to 42000 km diameter at the comet) is suitable to study the radial distribution of CO and detect the extended source observed in the infrared. We used excitation and radiative transfer models to simulate the observations. Various CO density distributions were considered, including 3D time-dependent hydrodynamical simulations which reproduce a CO rotating jet. The CO J(1-0) and J(2-1) observations can be consistently explained by a nuclear production of CO. Composite 50:50 nuclear/extended productions with characteristic scale lengths of CO parent L_p > 1500 km are rejected. Based on similar radiation transfer calculations, we show that the CO v = 1-0 ro-vibrational lines observed in comet Hale-Bopp at heliocentric distances less than 1.5 AU are severely optically thick. The broad extent of the CO brightness distribution in the infrared is mainly due to optical depth effects. Additional factors can be found in the complex structure of the CO coma, and non-ideal slit positioning caused by the anisotropy of dust IR emission. We conclude that both CO millimeter and infrared lines do not provide compelling evidence for a distributed source of CO in Hale-Bopp's atmosphere.Comment: Accepted for publication in Icarus (55 pages, 13 figures

    Water in Comet 2/2003 K4 (LINEAR) with Spitzer

    Full text link
    We present sensitive 5.5 to 7.6 micron spectra of comet C/2003 K4 (LINEAR) obtained on 16 July 2004 (r_{h} = 1.760 AU, Delta_{Spitzer} = 1.409 AU, phase angle 35.4 degrees) with the Spitzer Space Telescope. The nu_{2} vibrational band of water is detected with a high signal-to-noise ratio (> 50). Model fitting to the best spectrum yields a water ortho-to-para ratio of 2.47 +/- 0.27, which corresponds to a spin temperature of 28.5^{+6.5}_{-3.5} K. Spectra acquired at different offset positions show that the rotational temperature decreases with increasing distance from the nucleus, which is consistent with evolution from thermal to fluorescence equilibrium. The inferred water production rate is (2.43 +/- 0.25) \times 10^{29} molec. s^{-1}. The spectra do not show any evidence for emission from PAHs and carbonate minerals, in contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp). However, residual emission is observed near 7.3 micron the origin of which remains unidentified.Comment: 33 pages, including 11 figures, 2 tables, ApJ 2007 accepte

    The chemical diversity of comets

    Full text link
    A fundamental question in cometary science is whether the different dynamical classes of comets have different chemical compositions, which would reflect different initial conditions. From the ground or Earth orbit, radio and infrared spectroscopic observations of a now significant sample of comets indeed reveal deep differences in the relative abundances of cometary ices. However, no obvious correlation with dynamical classes is found. Further results come, or are expected, from space exploration. Such investigations, by nature limited to a small number of objects, are unfortunately focussed on short-period comets (mainly Jupiter-family). But these in situ studies provide "ground truth" for remote sensing. We discuss the chemical differences in comets from our database of spectroscopic radio observations, which has been recently enriched by several Jupiter-family and Halley-type comets.Comment: In press in Earth, Moon and Planets (proceedings of the workshop "Future Ground-based Solar System Research: Synergies with Space Probes and Space Telescopes", Portoferraio, Isola d'Elba, Livorno (Italy), 8-12 September 2008). 6 pages with 2 figure

    Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits

    Full text link
    Quantum bits, or qubits, are an example of coherent circuits envisioned for next-generation computers and detectors. A robust superconducting qubit with a coherent lifetime of OO(100 ÎŒ\mus) is the transmon: a Josephson junction functioning as a non-linear inductor shunted with a capacitor to form an anharmonic oscillator. In a complex device with many such transmons, precise control over each qubit frequency is often required, and thus variations of the junction area and tunnel barrier thickness must be sufficiently minimized to achieve optimal performance while avoiding spectral overlap between neighboring circuits. Simply transplanting our recipe optimized for single, stand-alone devices to wafer-scale (producing 64, 1x1 cm dies from a 150 mm wafer) initially resulted in global drifts in room-temperature tunneling resistance of ±\pm 30%. Inferring a critical current IcI_{\rm c} variation from this resistance distribution, we present an optimized process developed from a systematic 38 wafer study that results in << 3.5% relative standard deviation (RSD) in critical current (â‰ĄÏƒIc/⟹Ic⟩\equiv \sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle) for 3000 Josephson junctions (both single-junctions and asymmetric SQUIDs) across an area of 49 cm2^2. Looking within a 1x1 cm moving window across the substrate gives an estimate of the variation characteristic of a given qubit chip. Our best process, utilizing ultrasonically assisted development, uniform ashing, and dynamic oxidation has shown σIc/⟹Ic⟩\sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle = 1.8% within 1x1 cm, on average, with a few 1x1 cm areas having σIc/⟹Ic⟩\sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle << 1.0% (equivalent to σf/⟹f⟩\sigma_{f}/\left\langle f \right\rangle << 0.5%). Such stability would drastically improve the yield of multi-junction chips with strict critical current requirements.Comment: 10 pages, 4 figures. Revision includes supplementary materia

    Interferometric mapping of the 3.3-mm continuum emission of comet 17P/Holmes after its 2007 outburst

    Full text link
    Comet 17P/Holmes underwent a dramatic outburst in October 2007, caused by the sudden fragmentation of its nucleus and the production of a large quantity of grains scattering sunlight. We report on 90 GHz continuum observations carried out with the IRAM Plateau de Bure interferometer on 27.1 and 28.2 October 2007 UT, i.e., 4-5 days after the outburst. These observations probed the thermal radiation of large dust particles, and therefore provide the best constraints on the mass in the ejecta debris. The thermal emission of the debris was modelled and coupled to a time-dependent description of their expansion after the outburst. The analysis was performed in the Fourier plane. Visibilities were computed for the two observing dates and compared to the data to measure their velocity and mass. Optical data and 250-GHz continuum measurements published in the literature were used to further constrain the dust kinematics and size distribution. Two distinct dust components in terms of kinematic properties are identified in the data. The large-velocity component, with typical velocities V0 of 50-100 m/s for 1 mm particles, displays a steep size distribution with a size index estimated to q = -3.7 (\pm0.1), assuming a minimum grain size of 0.1 \mum. It corresponds to the fast expanding shell observed in optical images. The slowly-moving "core" component (V0 = 7-9 m/s) detected near the nucleus has a size index |q| < 3.4 and contains a higher proportion of large particles than the shell. The dust mass in the core is in the range 0.1-1 that of the shell. Using optical constants pertaining to porous grains (50% porosity) made of astronomical silicates mixed with water ice (48% in mass), the total dust mass Mdust injected by the outburst is estimated to 4-14 x 10**11 kg, corresponding to 3-9% the nucleus mass.Comment: 15 pages with 11 figures and 7 tables. Accepted for publication in Astronomy & Astrophysic

    Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

    Full text link
    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.Comment: 15 pages, 6 figure
    • 

    corecore