21,646 research outputs found

    The Role of Tree Clinics in Urban Forestry

    Get PDF
    A tree clinic analyzes tree problems and recommends appropriate actions to the public. The objective of tree clinics is to inform the citizen about urban trees. This paper is based on the experiences of 30 tree clinics held in Ann Arbor during the last eight years. The ingredients necessary for a successful tree clinic are discussed: (I) active sponsor, (2) suitable date and time, (3) good location, (4) proper publicity, (5) diversified experts, (6) proper organization, (7) sizable public turnout, and (8) follow-up publicity and acknowledgments

    Convex Rank Tests and Semigraphoids

    Get PDF
    Convex rank tests are partitions of the symmetric group which have desirable geometric properties. The statistical tests defined by such partitions involve counting all permutations in the equivalence classes. Each class consists of the linear extensions of a partially ordered set specified by data. Our methods refine existing rank tests of non-parametric statistics, such as the sign test and the runs test, and are useful for exploratory analysis of ordinal data. We establish a bijection between convex rank tests and probabilistic conditional independence structures known as semigraphoids. The subclass of submodular rank tests is derived from faces of the cone of submodular functions, or from Minkowski summands of the permutohedron. We enumerate all small instances of such rank tests. Of particular interest are graphical tests, which correspond to both graphical models and to graph associahedra

    Implicit cognition is impaired and dissociable in a head-injured group with executive deficits

    Get PDF
    Implicit or non-conscious cognition is traditionally assumed to be robust to pathology but Gomez-Beldarrain et al (1999, 2002) recently showed deficits on a single implicit task after head injury. Laboratory research suggests that implicit processes dissociate. This study therefore examined implicit cognition in 20 head-injured patients and age- and I.Q.-matched controls using a battery of four implicit cognition tasks: a Serial Reaction Time task (SRT), mere exposure effect task, automatic stereotype activation and hidden co-variation detection. Patients were assessed on an extensive neuropsychological battery, and MRI scanned. Inclusion criteria included impairment on at least one measure of executive function. The patient group was impaired relative to the control group on all the implicit cognition tasks except automatic stereotype activation. Effect size analyses using the control mean and standard deviation for reference showed further dissociations across patients and across implicit tasks. Patients impaired on implicit tasks had more cognitive deficits overall than those unimpaired, and a larger Dysexecutive Self/Other discrepancy (DEX) score suggesting greater behavioural problems. Performance on the SRT task correlated with a composite measure of executive function. Head-injury thus produced heterogeneous impairments in the implicit acquisition of new information. Implicit activation of existing knowledge structures appeared intact. Impairments in implicit cognition and executive function may interact to produce dysfunctional behaviour after head-injury. Future comparisons of implicit and explicit cognition should use several measures of each function, to ensure that they measure the latent variable of interest

    Hi-C and AIA observations of transverse magnetohydrodynamic waves in active regions

    Get PDF
    The recent launch of the High resolution Coronal imager (Hi-C) provided a unique opportunity of studying the EUV corona with unprecedented spatial resolution. We utilize these observations to investigate the properties of low-frequency (50−200 s) active region transverse waves, whose omnipresence had been suggested previously. The five-fold improvement in spatial resolution over SDO/AIA reveals coronal loops with widths 150−310 km and that these loops support transverse waves with displacement amplitudes <50 km. However, the results suggest that wave activity in the coronal loops is of low energy, with typical velocity amplitudes <3 km s-1. An extended time-series of SDO data suggests that low-energy wave behaviour is typical of the coronal structures both before and after the Hi-C observations

    Coherence of Spin Qubits in Silicon

    Full text link
    Given the effectiveness of semiconductor devices for classical computation one is naturally led to consider semiconductor systems for solid state quantum information processing. Semiconductors are particularly suitable where local control of electric fields and charge transport are required. Conventional semiconductor electronics is built upon these capabilities and has demonstrated scaling to large complicated arrays of interconnected devices. However, the requirements for a quantum computer are very different from those for classical computation, and it is not immediately obvious how best to build one in a semiconductor. One possible approach is to use spins as qubits: of nuclei, of electrons, or both in combination. Long qubit coherence times are a prerequisite for quantum computing, and in this paper we will discuss measurements of spin coherence in silicon. The results are encouraging - both electrons bound to donors and the donor nuclei exhibit low decoherence under the right circumstances. Doped silicon thus appears to pass the first test on the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200

    Quantum computing with an electron spin ensemble

    Get PDF
    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper Pair Box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations.Comment: Several small corrections and modifications. This version is identical to the version published in Phys. Rev. Let

    The interaction of unidirectional winds with an isolated barchan sand dune

    Get PDF
    Velocity profile measurements are determined on and around a barchan dune model inserted in the roughness layer on the tunnel floor. A theoretical investigation is made into the factors influencing the rate of sand flow around the dune. Flow visualization techniques are employed in the mapping of streamlines of flow on the dune's surface. Maps of erosion and deposition of sand are constructed for the barchan model, utilizing both flow visualization techniques and friction velocities calculated from the measured velocity profiles. The sediment budget found experimentally for the model is compared to predicted and observed results reported. The comparison shows fairly good agreement between the experimentally determined and predicted sediment budgets

    Global Optical Control of a Quantum Spin Chain

    Full text link
    Quantum processors which combine the long decoherence times of spin qubits together with fast optical manipulation of excitons have recently been the subject of several proposals. I show here that arbitrary single- and entangling two-qubit gates can be performed in a chain of perpetually coupled spin qubits solely by using laser pulses to excite higher lying states. It is also demonstrated that universal quantum computing is possible even if these pulses are applied {\it globally} to a chain; by employing a repeating pattern of four distinct qubit units the need for individual qubit addressing is removed. Some current experimental qubit systems would lend themselves to implementing this idea.Comment: 5 pages, 3 figure

    Remote capacitive sensing in two-dimension quantum-dot arrays

    Get PDF
    We investigate gate-defined quantum dots in silicon on insulator nanowire field-effect transistors fabricated using a foundry-compatible fully-depleted silicon-on-insulator (FD-SOI) process. A series of split gates wrapped over the silicon nanowire naturally produces a 2×n2\times n bilinear array of quantum dots along a single nanowire. We begin by studying the capacitive coupling of quantum dots within such a 2×\times2 array, and then show how such couplings can be extended across two parallel silicon nanowires coupled together by shared, electrically isolated, 'floating' electrodes. With one quantum dot operating as a single-electron-box sensor, the floating gate serves to enhance the charge sensitivity range, enabling it to detect charge state transitions in a separate silicon nanowire. By comparing measurements from multiple devices we illustrate the impact of the floating gate by quantifying both the charge sensitivity decay as a function of dot-sensor separation and configuration within the dual-nanowire structure.Comment: 9 pages, 3 figures, 35 cites and supplementar
    corecore