18,548 research outputs found
Velocity dispersions in galaxies: 1: The SO galaxy NGC 7332
A Coude spectrum of the SO galaxy NGC 7332 with 0.9 A resolution from 4186 to 4364 A was obtained with the SEC vidicon television camera and the Hale telescope. Comparisons with spectra of G and K giant stars, numerically broadened for various Maxwellian velocity distributions, give a dispersion velocity in the line of sight of 160 + or - 20 km/sec with the best fit at G8III. The dispersion appears to be constant within + or - 35 km/sec out to 1.4 kpc (H = 100 km/sec/mpc). After correction for projection, the rotation curve has a slope of 0.16 km/sec/pc at the center and a velocity of 130 km/sec at 1.4 kpc where it is still increasing. For an estimated effective radius of 3.5 kpc enclosing half the light, the virial theorem gives a mass of 1.4 x 10 to the 11th power solar masses if the mass-to-light ratio is constant throughout the galaxy. The photographic luminosity is 8.3 x 10 to the 9th power solar luminosities so that the M/L ratio is 17
Helium energy levels including corrections
The correction to energy is expressed in terms of an effective
Hamiltonian for an arbitrary state of helium. Numerical calculations
are performed for levels, and the previous result for the centroid
is corrected. While the resulting theoretical predictions for the ionization
energy are in moderate agreement with experimental values for , ,
and states, they are in significant disagreement for the singlet state
.Comment: 11 pages, with erratum submitted to Phys. Rev. A (2007
Dynamic analysis of a lithium-boiling potassium refractory metal Rankine cycle power system for the Jet Propulsion Laboratory
Lithium-boiling potassium refractory metal Rankine cycle power system heat transfer model
The Memphis blues: of Mister Crump: vocal edition with Norton\u27s famous lyrics
https://digitalcommons.ithaca.edu/sheetmusic/1078/thumbnail.jp
Coherence of Spin Qubits in Silicon
Given the effectiveness of semiconductor devices for classical computation
one is naturally led to consider semiconductor systems for solid state quantum
information processing. Semiconductors are particularly suitable where local
control of electric fields and charge transport are required. Conventional
semiconductor electronics is built upon these capabilities and has demonstrated
scaling to large complicated arrays of interconnected devices. However, the
requirements for a quantum computer are very different from those for classical
computation, and it is not immediately obvious how best to build one in a
semiconductor. One possible approach is to use spins as qubits: of nuclei, of
electrons, or both in combination. Long qubit coherence times are a
prerequisite for quantum computing, and in this paper we will discuss
measurements of spin coherence in silicon. The results are encouraging - both
electrons bound to donors and the donor nuclei exhibit low decoherence under
the right circumstances. Doped silicon thus appears to pass the first test on
the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200
A Silicon Surface Code Architecture Resilient Against Leakage Errors
Spin qubits in silicon quantum dots are one of the most promising building
blocks for large scale quantum computers thanks to their high qubit density and
compatibility with the existing semiconductor technologies. High fidelity
single-qubit gates exceeding the threshold of error correction codes like the
surface code have been demonstrated, while two-qubit gates have reached 98\%
fidelity and are improving rapidly. However, there are other types of error ---
such as charge leakage and propagation --- that may occur in quantum dot arrays
and which cannot be corrected by quantum error correction codes, making them
potentially damaging even when their probability is small. We propose a surface
code architecture for silicon quantum dot spin qubits that is robust against
leakage errors by incorporating multi-electron mediator dots. Charge leakage in
the qubit dots is transferred to the mediator dots via charge relaxation
processes and then removed using charge reservoirs attached to the mediators. A
stabiliser-check cycle, optimised for our hardware, then removes the
correlations between the residual physical errors. Through simulations we
obtain the surface code threshold for the charge leakage errors and show that
in our architecture the damage due to charge leakage errors is reduced to a
similar level to that of the usual depolarising gate noise. Spin leakage errors
in our architecture are constrained to only ancilla qubits and can be removed
during quantum error correction via reinitialisations of ancillae, which ensure
the robustness of our architecture against spin leakage as well. Our use of an
elongated mediator dots creates spaces throughout the quantum dot array for
charge reservoirs, measuring devices and control gates, providing the
scalability in the design
Charge dynamics and spin blockade in a hybrid double quantum dot in silicon
Electron spin qubits in silicon, whether in quantum dots or in donor atoms,
have long been considered attractive qubits for the implementation of a quantum
computer due to the semiconductor vacuum character of silicon and its
compatibility with the microelectronics industry. While donor electron spins in
silicon provide extremely long coherence times and access to the nuclear spin
via the hyperfine interaction, quantum dots have the complementary advantages
of fast electrical operations, tunability and scalability. Here we present an
approach to a novel hybrid double quantum dot by coupling a donor to a
lithographically patterned artificial atom. Using gate-based rf reflectometry,
we probe the charge stability of this double quantum dot system and the
variation of quantum capacitance at the interdot charge transition. Using
microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterise
the charge dynamics, which reveals a charge T2* of 200 ps and a relaxation time
T1 of 100 ns. Additionally, we demonstrate spin blockade at the inderdot
transition, opening up the possibility to operate this coupled system as a
singlet-triplet qubit or to transfer a coherent spin state between the quantum
dot and the donor electron and nucleus.Comment: 6 pages, 4 figures, supplementary information (3 pages, 4 figures
Global Optical Control of a Quantum Spin Chain
Quantum processors which combine the long decoherence times of spin qubits
together with fast optical manipulation of excitons have recently been the
subject of several proposals. I show here that arbitrary single- and entangling
two-qubit gates can be performed in a chain of perpetually coupled spin qubits
solely by using laser pulses to excite higher lying states. It is also
demonstrated that universal quantum computing is possible even if these pulses
are applied {\it globally} to a chain; by employing a repeating pattern of four
distinct qubit units the need for individual qubit addressing is removed. Some
current experimental qubit systems would lend themselves to implementing this
idea.Comment: 5 pages, 3 figure
Map of the Bangor, Orono & Oldtown Rail-Road
Map of the Bangor, Orono & Oldtown Rail-Road. Surveyed under the direction of A. C. Morton. by A. P. Robinson, Civil Engineer. 1850. Scale 1600 feet to 1 inch. A. P. Robinson, Del. J. H. Bufford & Co.\u27s Lith., Boston.
Map is orients north toward the upper right corner. Map size: 38 x 110 cm. 1:19,200 Scale. Relief shown by hachures. Profile of interior line at Thompson\u27s Point, upper line at Orono, and river line from Bangor to Orono and Milford that includes the high water mark at Bangor is depicted along the bottom margin of the map. Map includes diagrams of streets without labels. Map is in stable condition but shows folds and creases.https://digitalcommons.library.umaine.edu/mainebicentennial/1021/thumbnail.jp
- …