22 research outputs found

    Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region

    Get PDF
    Background: While Iran is on the path to eliminating malaria, the disease with 4.9 million estimated cases and 9300 estimated deaths in 2018 remains a serious health problem in the World Health Organization (WHO) Eastern Mediterranean Region. Anopheles stephensi is the main malaria vector in Iran and its range extends from Iraq to western China. Recently, the vector invaded new territories in Sri Lanka and countries in the Horn of Africa. Insecticide resistance in An. stephensi is a potential issue in controlling the spread of this vector. Methods: Data were collated from national and international databases, including PubMed, Google Scholar, Scopus, ScienceDirect, SID, and IranMedex using appropriate search terms. Results: Indoor residual spaying (IRS) with DDT was piloted in Iran in 1945 and subsequently used in the malaria eradication programme. Resistance to DDT in An. stephensi was detected in Iran, Iraq, Pakistan, and Saudi Arabia in the late 1960s. Malathion was used for malaria control in Iran in 1967, then propoxur in 1978, followed by pirimiphosmethyl from 1992 to 1994. The pyrethroid insecticide lambda-cyhalothrin was used from 1994 to 2003 followed by deltamethrin IRS and long-lasting insecticidal nets (LLINs). Some of these insecticides with the same sequence were used in other malaria-endemic countries of the region. Pyrethroid resistance was detected in An. stephensi in Afghanistan in 2010, in 2011 in India and in 2012 in Iran. The newly invaded population of An. stephensi in Ethiopia was resistant to insecticides of all four major insecticide classes. Different mechanisms of insecticide resistance, including metabolic and insecticide target site insensitivity, have been developed in An. stephensi. Resistance to DDT was initially glutathione S-transferase based. Target site knockdown resistance was later selected by pyrethroids. Esterases and altered acetylcholinesterase are the underlying cause of organophosphate resistance and cytochrome p450s were involved in pyrethroid metabolic resistance. Conclusions: Anopheles stephensi is a major malaria vector in Iran and many countries in the region and beyond. The species is leading in terms of development of insecticide resistance as well as developing a variety of resistance mechanisms. Knowledge of the evolution of insecticide resistance and their underlying mechanisms, in particular, are important to Iran, considering the final steps the country is taking towards malaria elimination, but also to other countries in the region for their battle against malaria. This systematic review may also be of value to countries and territories newly invaded by this species, especially in the Horn of Africa, where the malaria situation is already dire

    Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl) or a pyrethroid (lambdacyhalothrin) alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Get PDF
    BACKGROUND: Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. METHODS: Comparative studies of chlorpyrifos-methyl (CM), an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L), a pyrethroid, were conducted in experimental huts in CĂŽte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1(R)). Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. RESULTS AND CONCLUSION: All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1(R )genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1(R )and Ace.1(S )genes did not differ significantly from mosquitoes that carried only Ace.1(S )genes on any of the treated nets, indicating that the Ace.1(R )allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut

    Global Trends in the Use of Insecticides to Control Vector-Borne Diseases

    Get PDF
    Background: Data on insecticide use for vector control are essential for guiding pesticide management systems on judicious and appropriate use, resistance management, and reduction of risks to human health and the environment

    Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control.</p> <p>Methods</p> <p>A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted.</p> <p>Results</p> <p>Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO.</p> <p>Conclusions</p> <p>Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach.</p

    Evaluation of susceptibility status of Phlebotomus papatasi, the main vector of zoonotic Cutaneous Leishmaniasis, to different WHO recommended insecticides in an endemic focus, Central Iran

    Get PDF
    Background: Among neglected zoonotic diseases, leishmaniases caused by Leishmania parasite through infected female sand fly bite, are a group of diseases found in 98 countries and territories representing a critical burden of disease worldwide. Vector management plays a crucial role in reducing the burden of vector-borne diseases by WHO’s global plan. The objective of the current study was to assess the susceptibility status of wild phlebotomine sand flies from Esfahan Prov- ince, central Iran, to the recommended insecticides by WHO. Methods: Sand flies were collected by mouth aspirator in Matin Abad desert Eco-resort and were tested using WHO adult mosquito test kit against Dichlorodiphenyltrichloroethane (DDT) 4%, Deltamethrin 0.05%, Malathion 5% and Propoxur 0.1%. The number of knockdown sand flies were recorded during exposure time in ten minutes interval for DDT and Deltamethrin and they were allowed to recover for 24 hours. Knockdown Time50 (KD50) and KD90 were generated for them using Probit software. They were mounted and identified by valid keys. Results: Among the tested insecticides against female Phlebotomus papatasi, DDT, Deltame- thrin, and Malathion recorded the highest mortality rate of 100%, followed by Propoxur with 92.2% mortality for a one-hour exposure. For DDT, KD50 and KD90 were calculated 21.87 and 42.93 and for Deltamethrin, they were 23.74 and 56.50 minutes respectively. Total sand flies ex-posed with DDT and Deltamethrin shed their leg(s). Conclusion: It is concluded that Ph. papatasi from central Iran is susceptible to DDT, Deltame- thrin, Malathion, and Propoxur

    Status of Legislation and Regulatory Control of Public Health Pesticides in Countries Endemic with or at Risk of Major Vector-Borne Diseases

    Get PDF
    Background: Legislation and regulation of pesticides used in public health are essential for reducing risks to human health and the environment

    Global water quality changes posing threat of increasing infectious diseases, a case study on malaria vector Anopheles stephensi coping with the water pollutants using age-stage, two-sex life table method

    Get PDF
    Background: Water pollution due to uncontrolled release of chemical pollutants is an important global problem. Its effect on medically important insects, especially mosquitoes, is a critical issue in the epidemiology of mosquito-borne diseases. Methods: In order to understand the effect of water pollutants on the demography of Anopheles stephensi, colonies were reared in clean, moderately and highly polluted water for three consecutive generations at 27 °C, 75% RH, and a photoperiod of 12:12 h (L:D). The demographic data of the 4th generation of An. stephensi were collected and analysed using the age-stage, two-sex life table. Results: The intrinsic rate of increase (r), finite rate of increase (λ), mean fecundity (F) and net reproductive rate (R0) of An. stephensi in clean water were 0.2568 d−1, 1.2927 d−1, 251.72 eggs, and 109.08 offspring, respectively. These values were significantly higher than those obtained in moderately polluted water (r = 0.2302 d−1, λ = 1.2589 d−1, 196.04 eggs, and R0 = 65.35 offspring) and highly polluted water (r = 0.2282 d−1, λ = 1.2564 d−1, 182.45 eggs, and R0 = 62.03 offspring). Female adult longevity in moderately polluted (9.38 days) and highly polluted water (9.88 days) were significantly shorter than those reared in clean water (12.43 days), while no significant difference in the male adult longevity was observed among treatments. Conclusions: The results of this study showed that An. stephensi can partially adapt to water pollution and this may be sufficient to extend the range of mosquito-borne diseases

    Kdr genotyping and the first report of V410L and V1016I kdr mutations in voltage-gated sodium channel gene in Aedes aegypti (Diptera: Culicidae) from Iran

    Get PDF
    Background: Aedes aegypti is the main vector of arboviral diseases worldwide. The species invaded and became established in southern Iran in 2020. Insecticide-based interventions are primarily used for its control. With insecticide resistance widespread, knowledge of resistance mechanisms is vital for informed deployment of insecticidal interventions, but information from Iranian Ae. aegypti is lacking. Methods: Fifty-six Ae. aegypti specimens were collected from the port city of Bandar Lengeh in Hormozgan Province in the South of Iran in 2020 and screened for kdr mutations. The most common kdr mutations in Latin America and Asia (V410L, S989P, V1016G/I and F1534C), especially when present in combinations, are highly predictive of DDT and pyrethroid resistance were detected. Phylogenetic analyses based on the diversity of S989P and V1016G/I mutations were undertaken to assess the phylogeography of these kdr mutations. Results: Genotyping all four kdr positions of V410L, S989P, V1016G/I and F1534C revealed that only 16 out of the 56 (28.57%) specimens were homozygous wild type for all kdr mutation sites. Six haplotypes including VSVF (0.537), VSVC (0.107), LSVF (0.016), LSIF (0.071), VPGC (0.257) and LPGC (0.011) were detected in this study. For the first time, 11 specimens harbouring the V410L mutation, and 8 samples with V1016I mutation were found. V410L and V1016I were coincided in 8 specimens. Also, six specimens contained 1016G/I double mutation which was not reported before. Conclusions: The relatively high frequency of these kdr mutations in Iranian Ae. aegypti indicates a population exhibiting substantial resistance to pyrethroid insecticides, which are used widely in control operations and household formulations. The detection of the 410L/1016I kdr mutant haplotype in Iranian Ae. aegypti suggests possible convergence of invasive populations from West Africa or Latin America. However, as Iran has very limited maritime/air connections with those African countries, a Latin American origin for the invasive Ae. aegypti in Iran is more plausible

    Prevention and Control Policies of Dengue Vectors (Aedes aegypti and Aedes albopictus) in Iran

    No full text
    Background and Purpose: Dengue fever has become a major public health problem in many world regions due to increased trade, travel, and problems controlling Aedes vectors. This policy brief aims to review, analyze, and present evidence-based policies for dengue prevention and control. Materials and Methods: The present research is a compilation of a policy brief in Iran, carried out in 3 stages according to its methodology. In the first stage, the problem’s justification and description were provided systematically by examining scientific documents by searching national and international scientific databases, websites, guidelines, and books. In the second stage, the first author prepared a draft of the priority elements related to the policy framework and discussed them with other authors. In the third stage, the draft questions were categorized and summarized, and subsequently, the policies were compiled in close discussion with all authors. Results: According to the recommendations of the best available evidence in the literature, 5 policy options were presented for the prevention and control of dengue fever as follows: 1) developing basic, applied, and innovative research; 2) strengthening the capacity and capability of the human, infrastructural, and health system in all relevant sectors for the surveillance, control, monitoring, and evaluation; 3) strengthening inter- and intra-sectoral coordination and collaboration; 4) community engagement and mobilization; and 5) scaling up of functions and integrating tools.  Conclusion: To increase the long-term impact of policies, it is recommended to use an integrated approach with the continuous support of all stakeholders (local, national, and regional)
    corecore