47 research outputs found

    Solution-processed multiferroic thin-films with large magnetoelectric coupling at room-temperature

    Get PDF
    Experimental realization of thin films with a significant room-temperature magnetoelectric coupling coefficient, αME, in the absence of an external DC magnetic field, has been thus far elusive. Here, a large coupling coefficient of 750 ± 30 mV Oe-1 cm-1 is reported for multiferroic polymer nanocomposites (MPCs) thin-films in the absence of an external DC magnetic field. The MPCs are based on PMMA-grafted cobalt-ferrite nanoparticles uniformly dispersed in the piezoelectric polymer poly(vinylidene fluoride-co-trifluoroethylene, P(VDF-TrFE). It is shown that nanoparticle agglomeration plays a detrimental role and significantly reduces αME. Surface functionalization of the nanoparticles by grafting a layer of poly(methyl methacrylate) (PMMA) via atom transfer radical polymerization (ATRP) renders the nanoparticle miscible with P(VDF-TRFE) matrix, thus enabling their uniform dispersion in the matrix even in submicrometer thin films. Uniform dispersion yields maximized interfacial interactions between the ferromagnetic nanoparticles and the piezoelectric polymer matrix leading to the experimental demonstration of large αME values in solution-processed thin films, which can be exploited in flexible and printable multiferroic electronic devices for sensing and memory applications.</p

    Magnetoelectric coupling coefficient in multiferroic capacitors:Fact vs Artifacts

    Get PDF
    Multiferroic materials are characterized by their magnetoelectric coupling coefficient, which can be obtained using a lock-in amplifier by measuring the voltage developed across a multiferroic capacitor in a time-variable magnetic field, Hac cos(ωt), where Hac and ω are the amplitude and frequency of the applied magnetic field. The measurement method, despite its simplicity, is subject to various parasitic effects, such as magnetic induction, which leads to significant over-estimation of the actual magnetoelectric response. This article outlines the measurement theory for a multiferroic capacitor using the lock-in technique. It is demonstrated that the inductive contribution has linear proportionality with Hac, ω, and Hacω. It is shown that the true magnetoelectric coupling response is retrieved from the real component of the lock-in signal. Using a polymer-nanoparticle multiferroic composite, the internal consistency of the proposed measurement method is experimentally demonstrated, and it is shown that the actual multiferroic signal can be retrieved using the lock-in technique by removing the magnetic induction contribution from the signal. It is observed that the magnetoelectric voltage shows only a linear dependence with Hac, a saturating behavior with ω, and Hacω. Furthermore, a measurement protocol for reliable reporting of magnetoelectric coupling coefficient has been provided.</p

    The Angiogenic Paracrine Potential of Mesenchymal Stem Cells

    Get PDF
    Tissue engineering and regenerative medicine are branches of biomedical sciences that facilitate the use of cells and biocompatible scaffolds in favor of tissue restoration. In this regard, restoration and maintenance of angiogenesis and blood supplementation could be an effective strategy for injured tissue removal, accelerating healing rate, and successful transplantation of cells and scaffolds into target sites. It has been elucidated that mesenchymal stem cells have the potency to promote angiogenesis via paracrine activity and trans-differentiation into the endothelial lineage. In this chapter, we highlighted the paracrine property of mesenchymal stem cells to modulate angiogenesis in the target tissues

    Porous graphene/poly(vinylidene fluoride) nanofibers for pressure sensing

    Get PDF
    Piezoelectric polymers have emerged as promising materials for application in pressure sensing devices in particular for wearable applications, where inorganic piezoelectric materials can face limitations due to their brittleness. One of the bottlenecks for the adaptation of piezoelectric polymers is their relatively weak piezoelectric voltage coefficient. Hence there have been numerous efforts to improve the performance of the comprising devices by making composites of poly(vinylidene fluoride) (PVDF), or through making porous PVDF films, or by nanostructuring. Here, we demonstrate the fabrication of porous nanofibers with graphene/PVDF composites and investigate the suitability of the fiber for motion sensing. The nanofibers are fabricated by electrospinning from the solution phase. Guided by an experimentally validated phase diagram for PVDF/solvent/non-solvent ternary system, porous graphene/PVDF nanofibers with different porosities and pore morphologies have been produced through solidifying the fibers in the binodal or spinodal regions of the phase diagram. It is found that only by solidifying the composite fibers in the spinodal region, graphene loading of 0.1 wt% promotes the formation of the electroactive phase substantially, and the resulting fibers exhibit enhanced piezoelectric output. It is further shown that the comprising sensors are biocompatible and show high sensitivity to body motion.</p

    Paper‑based broadband fexible photodetectors with van der Waals materials

    Full text link
    Layered metal chalcogenide materials are exceptionally appealing in optoelectronic devices thanks to their extraordinary optical properties. Recently, their application as flexible and wearable photodetectors have received a lot of attention. Herein, broadband and high-performance paper-based PDs were established in a very facile and inexpensive method by rubbing molybdenum disulfide and titanium trisulfide crystals on papers. Transferred layers were characterized by SEM, EDX mapping, and Raman analyses, and their optoelectronic properties were evaluated in a wavelength range of 405–810 nm. Although the highest and lowest photoresponsivities were respectively measured for TiS3 (1.50 mA/W) and MoS2 (1.13 μA/W) PDs, the TiS3–MoS2 heterostructure not only had a significant photoresponsivity but also showed the highest on/off ratio (1.82) and fast response time (0.96 s) compared with two other PDs. This advantage is due to the band offset formation at the heterojunction, which efficiently separates the photogenerated electron–hole pairs within the heterostructure. Numerical simulation of the introduced PDs also confirmed the superiority of TiS3–MoS2 heterostructure over the other two PDs and exhibited a good agreement with the experimental results. Finally, MoS2 PD demonstrated very high flexibility under applied strain, but TiS3 based PDs suffered from its fragility and experience a remarkable drain current reduction at strain larger than ± 0.33%. However, at lower strains, all PDs displayed acceptable performance

    Identification of novel anti-cancer agents by the synthesis and cellular screening of a noscapine-based library

    Get PDF
    53 p.-7 fig.-1 tab.-1 schem.-1 graph. abst.Noscapine is a natural product first isolated from the opium poppy (Papaver somniferum L.) with anticancer properties. In this work, we report the synthesis and cellular screening of a noscapine-based library. A library of novel noscapine derivatives was synthesized with modifications in the isoquinoline and phthalide scaffolds. The so generated library, consisting of fifty-seven derivatives of the natural product noscapine, was tested against MDA-MB-231 breast cancer cells in a cellular proliferation assay (with a Z' > 0.7). The screening resulted in the identification of two novel noscapine derivatives as inhibitors of MDA cell growth with IC50 values of 5 µM and 1.5 µM, respectively. Both hit molecules have a five-fold and seventeen-fold higher potency, compared with that of lead compound noscapine (IC50 26 µM). The identified active derivatives retain the tubulin-binding ability of noscapine. Further testing of both hit molecules, alongside the natural product against additional cancer cell lines (HepG2, HeLa and PC3 cells) confirmed our initial findings. Both molecules have improved anti-proliferative properties when compared to the initial natural product, noscapine.We are also grateful to the Iran National Science Foundation (INSF, grant number 98026465) for financial support of this project and Shahid Beheshti University Research Council for providing facilities of to conduct this study. This work was supported by CSIC PIE 201920E111 (MAO).Peer reviewe

    Biorefining of sugarcane bagasse based on acid-catalysed glycerol pretreatment

    No full text
    The thesis investigated biorefining of sugarcane bagasse into value-added products. A glycerol-based fractionation method was developed at laboratory and pilot scales to convert sugarcane bagasse into fermentable sugar and high-quality lignin. The fermentable sugar was used for microbial oil production with applications in biofuel, biochemical, food and feed industries. The generated lignin had physico-chemical properties suitable for biochemical and polymer production. The thesis proposes methods to generate new revenue streams for Australian sugarcane industry
    corecore