376 research outputs found

    Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system

    Get PDF
    BACKGROUND: Mass spectrometry has become a powerful tool for the analysis of large numbers of proteins in complex samples, enabling much of proteomics. Due to various analytical challenges, so far no proteome has been sequenced completely. O'Shea, Weissman and co-workers have recently determined the copy number of yeast proteins, making this proteome an excellent model system to study factors affecting coverage. RESULTS: To probe the yeast proteome in depth and determine factors currently preventing complete analysis, we grew yeast cells, extracted proteins and separated them by one-dimensional gel electrophoresis. Peptides resulting from trypsin digestion were analyzed by liquid chromatography mass spectrometry on a linear ion trap-Fourier transform mass spectrometer with very high mass accuracy and sequencing speed. We achieved unambiguous identification of more than 2,000 proteins, including very low abundant ones. Effective dynamic range was limited to about 1,000 and effective sensitivity to about 500 femtomoles, far from the subfemtomole sensitivity possible with single proteins. We used SILAC (stable isotope labeling by amino acids in cell culture) to generate one-to-one pairs of true peptide signals and investigated if sensitivity, sequencing speed or dynamic range were limiting the analysis. CONCLUSION: Advanced mass spectrometry methods can unambiguously identify more than 2,000 proteins in a single proteome. Complex mixture analysis is not limited by sensitivity but by a combination of dynamic range (high abundance peptides preventing sequencing of low abundance ones) and by effective sequencing speed. Substantially increased coverage of the yeast proteome appears feasible with further development in software and instrumentation

    The impact of nonlinear exposure-risk relationships on seasonal time-series data: modelling Danish neonatal birth anthropometric data

    Get PDF
    Background Birth weight and length have seasonal fluctuations. Previous analyses of birth weight by latitude effects identified seemingly contradictory results, showing both 6 and 12 monthly periodicities in weight. The aims of this paper are twofold: (a) to explore seasonal patterns in a large, Danish Medical Birth Register, and (b) to explore models based on seasonal exposures and a non-linear exposure-risk relationship. Methods Birth weight and birth lengths on over 1.5 million Danish singleton, live births were examined for seasonality. We modelled seasonal patterns based on linear, U- and J-shaped exposure-risk relationships. We then added an extra layer of complexity by modelling weighted population-based exposure patterns. Results The Danish data showed clear seasonal fluctuations for both birth weight and birth length. A bimodal model best fits the data, however the amplitude of the 6 and 12 month peaks changed over time. In the modelling exercises, U- and J-shaped exposure-risk relationships generate time series with both 6 and 12 month periodicities. Changing the weightings of the population exposure risks result in unexpected properties. A J-shaped exposure-risk relationship with a diminishing population exposure over time fitted the observed seasonal pattern in the Danish birth weight data. Conclusion In keeping with many other studies, Danish birth anthropometric data show complex and shifting seasonal patterns. We speculate that annual periodicities with non-linear exposure-risk models may underlie these findings. Understanding the nature of seasonal fluctuations can help generate candidate exposures

    The correlation and level of agreement between end-tidal and blood gas pCO2 in children with respiratory distress: a retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the correlation and level of agreement between end-tidal carbon dioxide (EtCO<sub>2</sub>) and blood gas pCO<sub>2 </sub>in non-intubated children with moderate to severe respiratory distress.</p> <p>Methods</p> <p>Retrospective study of patients admitted to an intermediate care unit (InCU) at a tertiary care center over a 20-month period with moderate to severe respiratory distress secondary to asthma, bronchiolitis, or pneumonia. Patients with venous pCO<sub>2 </sub>(vpCO<sub>2</sub>) and EtCO<sub>2 </sub>measurements within 10 minutes of each other were eligible for inclusion. Patients with cardiac disease, chronic pulmonary disease, poor tissue perfusion, or metabolic abnormalities were excluded.</p> <p>Results</p> <p>Eighty EtCO<sub>2</sub>-vpCO<sub>2 </sub>paired values were available from 62 patients. The mean ± <smcaps>SD</smcaps> for EtCO<sub>2 </sub>and vpCO<sub>2 </sub>was 35.7 ± 10.1 mmHg and 39.4 ± 10.9 mmHg respectively. EtCO<sub>2 </sub>and vpCO<sub>2 </sub>values were highly correlated (r = 0.90, p < 0.0001). The correlations for asthma, bronchiolitis and pneumonia were 0.74 (p < 0.0001), 0.83 (p = 0.0002) and 0.98 (p < 0.0001) respectively. The mean bias ± <smcaps>SD</smcaps> between EtCO<sub>2 </sub>and vpCO<sub>2 </sub>was -3.68 ± 4.70 mmHg. The 95% level of agreement ranged from -12.88 to +5.53 mmHg. EtCO<sub>2 </sub>was found to be more accurate when vpCO<sub>2 </sub>was 35 mmHg or lower.</p> <p>Conclusion</p> <p>EtCO<sub>2 </sub>is correlated highly with vpCO<sub>2 </sub>in non-intubated pediatric patients with moderate to severe respiratory distress across respiratory illnesses. Although the level of agreement between the two methods precludes the overall replacement of blood gas evaluation, EtCO<sub>2 </sub>monitoring remains a useful, continuous, non-invasive measure in the management of non-intubated children with moderate to severe respiratory distress.</p

    Genetic Determinants of Variability in Glycated Hemoglobin (HbA1c) in Humans: Review of Recent Progress and Prospects for Use in Diabetes Care

    Get PDF
    Glycated hemoglobin A1c (HbA1c) indicates the percentage of total hemoglobin that is bound by glucose, produced from the nonenzymatic chemical modification by glucose of hemoglobin molecules carried in erythrocytes. HbA1c represents a surrogate marker of average blood glucose concentration over the previous 8 to 12 weeks, or the average lifespan of the erythrocyte, and thus represents a more stable indicator of glycemic status compared with fasting glucose. HbA1c levels are genetically determined, with heritability of 47% to 59%. Over the past few years, inroads into understanding genetic predisposition by glycemic and nonglycemic factors have been achieved through genome-wide analyses. Here I review current research aimed at discovering genetic determinants of HbA1c levels, discussing insights into biologic factors influencing variability in the general and diabetic population, and across different ethnicities. Furthermore, I discuss briefly the relevance of findings for diabetes monitoring and diagnosis

    Observational analytic studies in multiple sclerosis: controlling bias through study design and conduct. The Australian Multicentre Study of Environment and Immune Function

    Get PDF
    Rising multiple sclerosis incidence over the last 50 years and geographic patterns of occurrence suggest an environmental role in the causation of this multifactorial disease. Design options for epidemiological studies of environmental causes of multiple sclerosis are limited by the low incidence of the disease, possible diagnostic delay and budgetary constraints. We describe scientific and methodological issues considered in the development of the Australian Multicentre Study of Environment and Immune Function (the Ausimmune Study), which seeks, in particular, to better understand the causes of the well-known MS positive latitudinal gradient. A multicentre, case-control design down the eastern seaboard of Australia allows the recruitment of sufficient cases for adequate study power and provides data on environmental exposures that vary by latitude. Cases are persons with an incident first demyelinating event (rather than prevalent multiple sclerosis), sourced from a population base using a two tier notification system. Controls, matched on sex, age (within two years) and region of residence, are recruited from the general population. Biases common in case-control studies, eg, prevalence-incidence bias, admission-rate bias, non-respondent bias, observer bias and recall bias, as well as confounding have been carefully considered in the study design and conduct of the Ausimmune Study

    Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘coalho’ cheese shelf life

    Get PDF
    This work aimed at the characterisation of a nanolaminate coating produced by the layer-by-layer methodology and its evaluation on the preservation of ‘Coalho’ cheese. Initially, five alternate layers of alginate and lysozyme were assembled in an aminolysed/charged polyethylene terephthalate (A/C PET) and physically characterised by UV/VIS spectroscopy, contact angle, water vapour (WVTR) and oxygen (OTR) transmission rates and scanning electron microscopy. Afterwards, the same methodology was used to apply the nano-laminate coating in ‘Coalho’ cheese and its shelf life was evaluated during 20 days in terms of mass loss, pH, lipid peroxidation, titratable acidity and microbial count. UV/VIS spectroscopy and contact angle analyses confirmed the layers’ deposition and the successful assembly of nano-laminate coating on A/C PET surface. The coating presented WVTR and OTR values of 1.03×10−3 and 1.28× 10−4 g m−2 s−1, respectively. After 20 days, coated cheese showed lower values of mass loss, pH, lipidic peroxidation, microorganisms’ proliferation and higher titratable acidity in comparison with uncoated cheese. These results suggest that gas barrier and antibacterial properties of alginate/lysozyme nanocoating can be used to extend the shelf life of ‘Coalho’ cheese.The author Bartolomeu G. de S. Medeiros is recipient of a scholarship from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES-Brazil). The author Marthyna P. Souza is recipient of a scholarship from Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE, Brazil) and was recipient of a scholarship from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/PDEE-Brazil). The authors Ana C. Pinheiro, Ana I. Bourbon and Miguel A. Cerqueira are recipients of a fellowship (SFRH/BD/48120/2008, SFRH/BD/73178/2010 and SFRH/BPD/72753/2010, respectively), supported by Fundacao para a Ciencia e Tecnologia, POPH-QREN and FSE (FCT, Portugal). Maria G. Carneiro-da-Cunha express is gratitude to the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for research grant. The present work was supported by CAPES/PROCAD/NF/1415/2007. The support of EU Cost Action FA0904 is gratefully acknowledged

    Ecological Adaptation of Diverse Honey Bee (Apis mellifera) Populations

    Get PDF
    BACKGROUND: Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production. Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among the major 'omics disciplines for identifying the mechanisms employed by an organism in adapting to environmental challenges. RESULTS: Through proteome profiling of adult honey bee midgut from geographically dispersed, domesticated populations combined with multiple parallel statistical treatments, the data presented here suggest some of the major cellular processes involved in adapting to different climates. These findings provide insight into the molecular underpinnings that may confer an advantage to honey bee populations. Significantly, the major energy-producing pathways of the mitochondria, the organelle most closely involved in heat production, were consistently higher in bees that had adapted to colder climates. In opposition, up-regulation of protein metabolism capacity, from biosynthesis to degradation, had been selected for in bees from warmer climates. CONCLUSIONS: Overall, our results present a proteomic interpretation of expression polymorphisms between honey bee ecotypes and provide insight into molecular aspects of local adaptation or selection with consequences for honey bee management and breeding. The implications of our findings extend beyond apiculture as they underscore the need to consider the interdependence of animal populations and their agro-ecological context
    corecore