3,951 research outputs found

    Size-dependent nonlocal effects in plasmonic semiconductor particles

    Get PDF
    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic InSb and nn-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm150\mathrm{\,nm} InSb particle at 300 K300\mathrm{\,K}, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects.Comment: 7 pages, 3 figures, 1 table, corrected typos in text and figure

    Quantum interference and entanglement induced by multiple scattering of light

    Get PDF
    We report on the effects of quantum interference induced by transmission of an arbitrary number of optical quantum states through a multiple scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between two output modes. It is shown that the effect of quantum interference survives averaging over all ensembles of disorder and manifests itself as increased photon correlations giving rise to photon anti-bunching. Finally, the existence of continuous variable entanglement correlations in a volume speckle pattern is predicted. Our results suggest that multiple scattering provides a promising way of coherently interfering many independent quantum states of light of potential use in quantum information processing.Comment: 5 pages including 4 figure

    Mode-Field Radius of Photonic Crystal Fibers Expressed by the V-parameter

    Full text link
    We numerically calculate the equivalent mode-field radius of the fundamental mode in a photonic crystal fiber (PCF) and show that this is a function of the V-parameter only and not the relative hole size. This dependency is similar to what is found for graded-index standard fibers and we furthermore show that the relation for the PCF can be excellently approximated with the same general mathematical expression. This is to our knowledge the first semi-analytical description of the mode-field radius of a PCF.Comment: Accepted for Opt. Let

    Low-loss criterion and effective area considerations for photonic crystal fibers

    Get PDF
    We study the class of endlessly single-mode all-silica photonic crystal fibers with a triangular air-hole cladding. We consider the sensibility to longitudinal nonuniformities and the consequences and limitations for realizing low-loss large-mode area photonic crystal fibers. We also discuss the dominating scattering mechanism and experimentally we confirm that both macro and micro-bending can be the limiting factor.Comment: Accepted for Journal of Optics A - Pure and Applied Optic

    Modal cut-off and the V-parameter in photonic crystal fibers

    Full text link
    We address the long-standing unresolved problem concerning the V-parameter in a photonic crystal fiber (PCF). Formulate the parameter appropriate for a core-defect in a periodic structure we argue that the multi-mode cut-off occurs at a wavelength lambda* which satisfies V_PCF(lambda*)=pi. Comparing to numerics and recent cut-off calculations we confirm this result.Comment: 3 pages including 2 figures. Accepted for Optics Letter

    Xanthomonas campestris pv. campestris race 1 is the main causal agent of black rot of Brassicas in Southern Mozambique

    Get PDF
    Severe outbreaks of bacterial black rot caused by Xanthomonas campestris pv. campestris (Xcc) were observed in Brassica production fields of Southern Mozambique. The causal agent of the disease in the Mahotas and Chòkwé districts was identified and characterised. In total, 83 Xanthomonas-like strains were isolated from seed samples and leaves of cabbage and tronchuda cole with typical symptoms of the disease. Forty-six out of the 83 strains were found to be putative Xcc in at least one of the tests used: Classical biochemical assays, enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies, Biolog identification system, polymerase chain reaction (PCR) with specific primers and pathogenicity tests. The ELISA tests were positive for 43 strains. Biolog identified 43 strains as Xanthomonas, but only 32 as Xcc. PCR tests with primers targeting a fragment of the hrpF gene were positive for all 46 strains tested. Three strains were not pathogenic or weakly pathogenic and all other strains caused typical black rot symptoms in brassicas. Race type differentiation tests revealed the Xcc strains from Mozambique as members of race 1. The prevalence of this pathogenic race of the Xcc pathogen in Mozambique should be considered when black rot resistant cultivars are evaluated or introduced into the production regions of this country

    Low-loss photonic crystal fibers for transmission systems and their dispersion properties

    Full text link
    We report on a single-mode photonic crystal fiber with attenuation and effective area at 1550 nm of 0.48 dB/km and 130 square-micron, respectively. This is, to our knowledge, the lowest loss reported for a PCF not made from VAD prepared silica and at the same time the largest effective area for a low-loss (< 1 dB/km) PCF. We briefly discuss the future applications of PCFs for data transmission and show for the first time, both numerically and experimentally, how the group velocity dispersion is related to the mode field diameterComment: 5 pages including 3 figures + 1 table. Accepted for Opt. Expres

    Photonic crystal fiber with a hybrid honeycomb cladding

    Full text link
    We consider an air-silica honeycomb lattice and demonstrate a new approach to the formation of a core defect. Typically, a high or low-index core is formed by adding a high-index region or an additional air-hole (or other low-index material) to the lattice, but here we discuss how a core defect can be formed by manipulating the cladding region rather than the core region itself. Germanium-doping of the honeycomb lattice has recently been suggested for the formation of a photonic band-gap guiding silica-core and here we experimentally demonstrate how an index-guiding silica-core can be formed by fluorine-doping of the honeycomb lattice.Comment: 5 pages including 3 figures. Accepted for Optics Expres

    Improved large-mode area endlessly single-mode photonic crystal fibers

    Get PDF
    We numerically study the possibilities for improved large-mode area endlessly single mode photonic crystal fibers for use in high-power delivery applications. By carefully choosing the optimal hole diameter we find that a triangular core formed by three missing neighboring air holes considerably improves the mode area and loss properties compared to the case with a core formed by one missing air hole. In a realized fiber we demonstrate an enhancement of the mode area by ~30 % without a corresponding increase in the attenuation.Comment: 3 pages including 3 eps-figures. Accepted for Optics Letter

    Quantum optical effective-medium theory for loss-compensated metamaterials

    Full text link
    A central aim in metamaterial research is to engineer sub-wavelength unit cells that give rise to desired effective-medium properties and parameters, such as a negative refractive index. Ideally one can disregard the details of the unit cell and employ the effective description instead. A popular strategy to compensate for the inevitable losses in metallic components of metamaterials is to add optical gain material. Here we study the quantum optics of such loss-compensated metamaterials at frequencies for which effective parameters can be unambiguously determined. We demonstrate that the usual effective parameters are insufficient to describe the propagation of quantum states of light. Furthermore, we propose a quantum-optical effective-medium theory instead and show that it correctly predicts the properties of the light emerging from loss-compensated metamaterials.Comment: 6 pages, 3 figures. Accepted for Physical Review Letter
    • …
    corecore